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Hamilton-Jacobi Wasserstein Geometry Equivalence result

Aim of the talk

Consider a Hamilton-Jacobi equation

H (µ,DµV (µ)) = 0 µ ∈ Ω, V (µ) = J(µ) µ ∈ ∂Ω. (1)

Here
• µ is a measure, Ω an open set of the Wasserstein space P2(Rd).
• DµV (µ) is the application of the directional derivatives.

Our aim Compare two notions of viscosity solutions for (1).
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Hamilton-Jacobi Wasserstein Geometry Equivalence result

First-order Hamilton-Jacobi equations

Nonlinear first-order equations in an open set Ω ⊂ Rd:

H (x,∇u(x)) = 0 x ∈ Ω, u(x) = J(x) x ∈ ∂Ω.

Classical examples include

• the Eikonal equation H (x, p) = |p| ,

• HJB equations H (x, (pt, px)) = −pt + sup
b∈F [x]

−⟨px, b⟩,

• Ishii equations H (x, p) = sup
a∈A

inf
b∈B

−⟨p, f(x, a, b)⟩...

Usually nonsmooth solutions, as the distance to the boundary.
Need for an adapted notion of weak solutions.
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Hamilton-Jacobi Wasserstein Geometry Equivalence result

Viscosity solutions

In Rd, viscosity solutions are equivalently defined using

• smooth test functions:
u is a subsolution if it is u.s.c, satisfies
u⩽⩽⩽ J, and if whenever φ ∈ C1 is
such that u− φ reaches a maximum at x,

there holds H (x,∇φ(x)) ⩽⩽⩽ 0.

• sub and superdifferentials:
u is a subsolution if it is u.s.c, satisfies
u⩽⩽⩽ J, and if whenever a vector v belongs
to the superdifferential of u at x,

there holds H (x, v) ⩽⩽⩽ 0.
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Hamilton-Jacobi Wasserstein Geometry Equivalence result

The mathematical definition

Let µ, ν ∈ P(Rd) be two probability measures,

and denote
the set of transport plans by

Γ(µ, ν) :=
{
η ∈ P((Rd)2)

∣∣∣ πx#η = µ, πy#η = ν
}
,

the squared Wasserstein distance by

d2W(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)

|x− y|2 dη(x, y).

Def We call Wasserstein space the set P2(Rd) :=
{
µ ∈ P(Rd)

∣∣ dW(µ, δ0) <∞
}
,

endowed with the distance dW .
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Hamilton-Jacobi Wasserstein Geometry Equivalence result

The artistic definition

Jean-Olivier Héron, 1997
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Hamilton-Jacobi Wasserstein Geometry Equivalence result

Differentiability in the Wasserstein space

• Lions differentiability: recast µ as the law of some random variable X : (E, E ,P) → Rd.

Then lift u : P2(Rd) → R in U : L2
P(E;Rd) → R by

U(X) := u(X#P)

to use the differentiability in the Hilbert L2
P(E;Rd) [Lio07, CD18]. Allows to define C1

maps. Problem: find them! Mollification procedures [CM23] or penalization [DJS23].

• Semidifferentials: defined as elements of L2
µ(Rd;TRd), used in [GNT08], in the series

[MQ18, JMQ20, JMQ22], extension to P2(graphs) in [GMŚ23]. Proved to be equivalent
to Lions differentiability in [GT19].

• Insights from viscosity in metric spaces for Eikonal-type equations: [AF14] defines
generalized semidifferentials, to obtain consistency with their notion based on metric slope.
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Hamilton-Jacobi Wasserstein Geometry Equivalence result

Directional derivatives ([JJZ, Jer22, JPZ23])

Define the Hamiltonian H as H : D(H) ⊂ T → R, where

T :=
{
(µ, p)

∣∣∣ µ ∈ P2(Rd), p : P2(TRd)µ → R sufficiently regular
}
.

Typically, p is the application of directional derivatives of a function φ : P2(Rd) → R, given as

Dµφ : P2(TRd)µ → R, Dµφ(ξ) := lim
h↘0

φ((πx + hπv)#ξ)− φ(µ)

h
.
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For instance, a control Hamiltonian writes

H(µ, p) := sup
ξ∈F [µ]

−p(ξ).
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Hamilton-Jacobi Wasserstein Geometry Equivalence result

Tangent cones

Classical “regular” tangent cone:

TanµP2(Rd) := {∇φ | φ ∈ C∞
c }L

2
µ .

Let
−→
µν ⊂ P2(TRd)µ be the set of initial velocities

of geodesics from µ to ν. Denote

W 2
µ(ξ, ζ) :=

∫
x∈Rd

d2W,TxRd (ξx, ζx) dµ(x)

a generalization of the L2
µ distance.

Def The generalized tangent cone is

TanµP2(Rd) := R+ ·
{−→
µν

∣∣∣ ν ∈ P2(Rd)
}Wµ
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of geodesics from µ to ν. Denote

W 2
µ(ξ, ζ) :=

∫
x∈Rd

d2W,TxRd (ξx, ζx) dµ(x)

a generalization of the L2
µ distance.

Def The generalized tangent cone is

TanµP2(Rd) := R+ ·
{−→
µν

∣∣∣ ν ∈ P2(Rd)
}Wµ
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Pseudo scalar products

Def – [Gig08] Denote ∥ξ∥µ =Wµ(ξ, 0µ). For any ξ, ζ ∈ P2(TRd)µ, define

⟨ξ, ζ⟩+µ :=
1

2

[
∥ξ∥2µ + ∥ζ∥2µ −W 2

µ(ξ, ζ)
]
, ⟨ξ, ζ⟩−µ := −⟨ξ,−ζ⟩+µ .

If ξ = f#µ and ζ = g#µ for f, g ∈ L2
µ(Rd;TRd), then

⟨ξ, ζ⟩+µ = ⟨ξ, ζ⟩−µ = ⟨f, g⟩L2
µ
.

In general, ⟨ξ, ζ⟩−µ ⩽ ⟨ξ, ζ⟩+µ . For instance, if ξ = 1
2δ(0,−1) +

1
2δ(0,1) in dimension 1, then

⟨ξ, ξ⟩+µ = ∥ξ∥2µ = 1 but ⟨ξ, ξ⟩−µ = −1.
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Semidifferentials

Def – Superdifferential Let φ : P2(Rd) → R. An element ξ ∈ TanµP2(Rd) belongs
to the superdifferential of φ at µ, denoted ∂+µ φ, if for all ν ∈ P2(Rd),

φ(ν)− φ(µ) ⩽ inf
η∈−→µν

⟨ξ, η⟩−µ + o (dW(µ, ν)) .

Def – Subdifferential Let φ : P2(Rd) → R. An element ξ ∈ TanµP2(Rd) belongs
to the subdifferential of φ at µ, denoted ∂−µ φ, if for all ν ∈ P2(Rd),

φ(ν)− φ(µ) ⩾ sup
η∈−→µν

⟨ξ, η⟩+µ + o (dW(µ, ν)) .
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A good set of test functions

Def – Test functions For any µ ∈ P2(Rd), define

T+,µ :=

φ : Ω → R

∣∣∣∣∣∣ φ is lower semicontinuous, directionally differentiable at µ,

∂+µ φ is nonempy, bounded and Dµφ(µ)(·) = infζ∈∂+µ φ ⟨·, ζ⟩
−
µ .

 .

Similarly, T−,µ := −T+,µ.

For instance, if µ, σ ∈ P2(Rd) and ξ ∈ P2(TRd)µ are fixed,

ν 7→ d2W(ν, σ) and ν 7→ inf
η∈−→µν

⟨ξ, η⟩−µ

belong to T+,µ.
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Precise definitions

Consider the HJB equation

H(µ,Dµu(µ)) = 0 µ ∈ Ω, u(µ) = J(µ) µ ∈ ∂Ω. (2)

Def – Using test functions
A map u : P2(Rd) → R is a subsolution
of (2) if it is u.s.c, if u⩽⩽⩽ J over ∂Ω, and
if for any µ and φ ∈ T+++,µ such that u−φ
reaches a maximum at µ,

H(µ,Dµφ)⩽⩽⩽ 0.

Def – Using semidifferentials
A map u : P2(Rd) → R is a subsolution
of (2) if it is u.s.c, if u⩽⩽⩽ J over ∂Ω, and
if for any element ξ ∈ ∂+++µ u,

H(µ, ⟨ξ, ·⟩−−−µ )⩽⩽⩽ 0.

A map u : P2(Rd) → R is a viscosity solution of (2) if it is both a sub and a supersolution.
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Equivalence result

Theorem 1 Assume that for any µ ∈ P2(Rd), any φ ∈ T+,µ and ψ ∈ T−,µ,

H(µ,Dµφ) ⩽ sup
ξ∈∂+µ φ

H(µ, ⟨ξ, ·⟩−µ ), and H(µ,Dµψ) ⩾ inf
ξ∈∂−µ ψ

H(µ, ⟨ξ, ·⟩+µ ). (3)

Then both definitions are equivalent, in the sense that they share the same semisolutions.

• Condition (3) is trivial if φ,ψ are C1 in the sense of Lions differentiability.
• In the case of control problems with Lip. dynamic, a strong* comparison principle brings

existence and uniqueness of the solution [JPZ23].
• Proof by construction of a test function on one side, and using (3) on the other side.

*with an adapted notion of semicontinuity
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Examples of application

• Eikonal-type equations Let κ : R+ → R+ be nondecreasing.

H(µ, p) := κ(|p|µ), where |p|µ = sup
ξ∈TanµP2(Rd),∥ξ∥µ=1

|p(ξ)| .

• “Concave-convex Hamiltonians” Let F1, F2 : P2(Rd) ⇒ P2(TRd)µ be set-valued
maps with nonempty, horizontally convex and compact images in (Tanµ,Wµ).

H(µ, p) := sup
ξ1∈F1[µ]

−p(ξ1) + inf
ξ2∈F2[µ]

−p(ξ2),
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Conclusion

Conclusion
• Possibility to use explicit test functions built from the squared Wasserstein distance or

pseudo scalar products.

• Equivalence between two notions of viscosity solutions under an explicit condition over the
Hamiltonian.

Perspectives
• Extension over P2(N ), where N is not Hilbertian (network structure).
• Link with Lions differentiability?
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Thank you!
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