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The (max,+) idempotent calculus

Let Ω := R ∪ {−∞}.

Def 1 – Operations For a, b ∈ Ω, define

a⊕ b := max (a, b) , a⊗ b := a+ b.

Both operations are commutative and associative, and

a⊗ (b⊕ c) = a+max(b, c) = max(a+ b, a+ c) = (a⊗ b)⊕ (a⊗ c).

"Idempotent" since a⊕ a = a. Define 0 := −∞ and 1I := 0. Then

0⊕ a = max (−∞, a) = a, 0⊗ a = −∞+ a = 0, 1I ⊗ a = a+ 0 = a.

Then (Ω,⊕,⊗, 0, 1I) is a semiring (ring without additive inverse).
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Integrals

Endow Ω with the application d(a, b) :=
∣∣ea − eb

∣∣, and let f : Ω → Ω be continuous. Then∑⊕

i∈Z∪{−∞}

f(hi) = max
i∈Z∪{−∞}

f(hi) −→
h↘0

sup
x∈Ω=R∪{−∞}

f(x).

Def 2 – Integral Define ∫ ⊕

x∈Ω
f(x) := sup

x∈Ω
f(x).

In particular, the scalar product becomes

⟨f, g⟩⊕ =

∫ ⊕

x∈Ω
f(x)⊗ g(x) = sup

x∈Ω
f(x) + g(x).
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People and motivation

• Several names: tropical analysis, idempotent or (max,+) algebra.

• 1997: book from Kolokolstov and Maslov [KM97]
• 2006: numerical book from McEneaney [McE06]
• In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)
• Currently a topic in image processing (morphological operations, [Ang15, Ang22]) and

physics ([de]quantization, [Lit12]).

Motivation Ease the study of optimization problems by directly working with the
"natural" operations of (here) maximization and sum of gains.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
5 / 26

https://www.youtube.com/watch?v=nOSo3Me9jJw


The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

People and motivation

• Several names: tropical analysis, idempotent or (max,+) algebra.
• 1997: book from Kolokolstov and Maslov [KM97]

• 2006: numerical book from McEneaney [McE06]
• In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)
• Currently a topic in image processing (morphological operations, [Ang15, Ang22]) and

physics ([de]quantization, [Lit12]).

Motivation Ease the study of optimization problems by directly working with the
"natural" operations of (here) maximization and sum of gains.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
5 / 26

https://www.youtube.com/watch?v=nOSo3Me9jJw


The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

People and motivation

• Several names: tropical analysis, idempotent or (max,+) algebra.
• 1997: book from Kolokolstov and Maslov [KM97]
• 2006: numerical book from McEneaney [McE06]

• In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)
• Currently a topic in image processing (morphological operations, [Ang15, Ang22]) and

physics ([de]quantization, [Lit12]).

Motivation Ease the study of optimization problems by directly working with the
"natural" operations of (here) maximization and sum of gains.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
5 / 26

https://www.youtube.com/watch?v=nOSo3Me9jJw


The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

People and motivation

• Several names: tropical analysis, idempotent or (max,+) algebra.
• 1997: book from Kolokolstov and Maslov [KM97]
• 2006: numerical book from McEneaney [McE06]
• In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)

• Currently a topic in image processing (morphological operations, [Ang15, Ang22]) and
physics ([de]quantization, [Lit12]).

Motivation Ease the study of optimization problems by directly working with the
"natural" operations of (here) maximization and sum of gains.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
5 / 26

https://www.youtube.com/watch?v=nOSo3Me9jJw


The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

People and motivation

• Several names: tropical analysis, idempotent or (max,+) algebra.
• 1997: book from Kolokolstov and Maslov [KM97]
• 2006: numerical book from McEneaney [McE06]
• In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)
• Currently a topic in image processing (morphological operations, [Ang15, Ang22]) and

physics ([de]quantization, [Lit12]).

Motivation Ease the study of optimization problems by directly working with the
"natural" operations of (here) maximization and sum of gains.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
5 / 26

https://www.youtube.com/watch?v=nOSo3Me9jJw


The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

People and motivation

• Several names: tropical analysis, idempotent or (max,+) algebra.
• 1997: book from Kolokolstov and Maslov [KM97]
• 2006: numerical book from McEneaney [McE06]
• In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)
• Currently a topic in image processing (morphological operations, [Ang15, Ang22]) and

physics ([de]quantization, [Lit12]).

Motivation Ease the study of optimization problems by directly working with the
"natural" operations of (here) maximization and sum of gains.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
5 / 26

https://www.youtube.com/watch?v=nOSo3Me9jJw


The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

Table of Contents

The (max,+) semialgebra

Link with linear algebra

An application: finite-dimensional (max,+) system

The heat equation

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
6 / 26



The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

An elementary result

Proposition – v Let f > g. Then

lim
h↘0

h log
(
ef/h + eg/h

)
= lim

h↘0
h log

(
ef/h − eg/h

)
= f.

Readily visible by noticing that

ef/h ± eg/h = ef/h
(
1± e(g−f)/h

)
.

Going further, for any upper bounded and continuous f , there holds

lim
h↘0

h log

(∫
x∈Rd

exp

(
f(x)

h

)
dx

)
= sup

x∈Rd

f(x).
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Logarithm transform

Def 3 – Logarithm trick For h > 0, consider the operations

a⊗h b := h log
(
ea/h · eb/h

)
, a⊕h b := h log(ea/h + eb/h).

Then
a⊗h b = a+ b, a⊕h b −→

h↘0
max(a, b).

We could go further with this game, for instance with

a^⊕b := lim
h↘0

h log (exp(a/h)^ exp(b/h)) =


a b = 0

1I = 0 b < 0

+∞ b > 0.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
8 / 26



The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

Logarithm transform

Def 3 – Logarithm trick For h > 0, consider the operations

a⊗h b := h log
(
ea/h · eb/h

)
, a⊕h b := h log(ea/h + eb/h).

Then
a⊗h b = a+ b, a⊕h b −→

h↘0
max(a, b).

We could go further with this game, for instance with

a^⊕b := lim
h↘0

h log (exp(a/h)^ exp(b/h)) =


a b = 0

1I = 0 b < 0

+∞ b > 0.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
8 / 26



The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

Logarithm transform

Def 3 – Logarithm trick For h > 0, consider the operations

a⊗h b := h log
(
ea/h · eb/h

)
, a⊕h b := h log(ea/h + eb/h).

Then
a⊗h b = a+ b, a⊕h b −→

h↘0
max(a, b).

We could go further with this game, for instance with

a^⊕b := lim
h↘0

h log (exp(a/h)^ exp(b/h))

=


a b = 0

1I = 0 b < 0

+∞ b > 0.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
8 / 26



The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

Logarithm transform

Def 3 – Logarithm trick For h > 0, consider the operations

a⊗h b := h log
(
ea/h · eb/h

)
, a⊕h b := h log(ea/h + eb/h).

Then
a⊗h b = a+ b, a⊕h b −→

h↘0
max(a, b).

We could go further with this game, for instance with

a^⊕b := lim
h↘0

h log (exp(a/h)^ exp(b/h)) =


a b = 0

1I = 0 b < 0

+∞ b > 0.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
8 / 26



The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

Dialog between (+, ·) and (max,+)

(+, ·)

Classical
operations

h log(·)
⇀↽

exp(·/h)

(⊕h,⊗h)

Intermediate
operations

h → 0

−→
(max,+)

Idempotent
operations
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Linearity

Let I : Rd → Rd be linear, and denote

Φh(x) := h log ◦ I ◦ exp (x/h) .

Here all the operations are understood coordinate by coordinate. Then

Φh (a⊕h b)

= h log ◦ I ◦ e
a⊕hb

h = h log ◦ I
(
ea/h + eb/h

)
= h log

(
I ea/h + I eb/h

)
= h log

(
e

Φh(a)

h + e
Φh(b)

h

)
= Φh(a)⊕h Φh(b).

Similarly,
Φh(a⊗h b) = a⊗h Φh(b) = Φh(a)⊗h b = a⊗ b⊗ Φh(1I).

The limit operator Φ := limh↘0Φh is (max,+)−linear.
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The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

Example

Let d = 2 and I(x) = Ax, where A :=

1 1

2 0

. Then

Φh(x) = h log ◦ I ◦ exp (x/h)

= h log

exp (x1/h) + exp (x2/h)

2 exp (x1/h)

 −→
h↘0

max(x1, x2)

x1

 .

Define Φ(x) :=

max(x1, x2)

x1

: then for any λ ∈ R, (x1, x2) and (y1, y2),

Φ (λ⊗ x⊕ y) = Φ

max(λ+ x1, y1)

max(λ+ x2, y2)

 =

max (λ+ x1, y1, λ+ x2, y2)

max(λ+ x1, y1)

 = λ⊗Φ(x)⊕Φ(y).
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The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

Setting

Consider the (max,+) system

Π⊗ ξ = β, (1)

where Π ∈ M2,2 is a matrix, ξ, β ∈ R2 are vectors with β given, and for each i ∈ J1, 2K,

(Π⊗ ξ)i =
∑⊕

j∈J1,2K

Πij ⊗ ξj = max
j∈J1,2K

Πij + ξj .

In which cases can we get a solution to (1) by using the link with classical algebra?
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The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

Transformation into linear variables

For each h > 0, define P ∈ M2,2 and x, b ∈ R2 by

P h
ij := exp(Πij/h), xhj := exp(ξj/h), bhi := exp(βi/h).

The linear system P hxh = bh has a solution if det(P h) ̸= 0, i.e.

P h
11P

h
22 − P h

12P
h
21 ̸= 0 ⇐⇒ exp

(
Π11 +Π22

h

)
̸= exp

(
Π12 +Π21

h

)
.

Assume that Π11 +Π22 ̸= Π12 +Π21, and consider xh = (P h)−1bh solving P hxh = bh. Then

β = h log(bh) = h log
(
P hxh

)
= h log

 ∑
j∈J1,2K

exp

(
Πij + ξj

h

) −→
h↘0

Π⊗ ξ.
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The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

Going back

Thus if we can apply h log(·) to xh and pass to the limit, we would get a solution.

Assume

∀i ∈ J1, 2K, xhi =
(
(P h)−1b

)
i
⩾ 0. (2)

One also obtains that (xh)h is bounded uniformly in h. By compactness, (1) admits solutions.

Example Consider for instance

Π =

1I 0

0 1I

 =

 0 −∞

−∞ 0

 =⇒ P = Id.

Then P−1 = Id. As (2) is satisfied for all b = exp(β/h), we obtain that ξ = β solves (1).
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Going back

Thus if we can apply h log(·) to xh and pass to the limit, we would get a solution. Assume

∀i ∈ J1, 2K, xhi =
(
(P h)−1b

)
i
⩾ 0. (2)

One also obtains that (xh)h is bounded uniformly in h. By compactness, (1) admits solutions.
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Another example

Consider

Π =

1 2

4 3



=⇒ P =

e1/h e2/h

e4/h e3/h

 , P−1 =
1

e4/h − e6/h

 e3/h −e2/h

−e4/h e1/h

 .

Since detP h = e4/h − e6/h < 0, the condition (2) over β becomes

e
3+β1

h − e
4+β2

h ⩽ 0, and − e
2+β1

h + e
1+β2

h ⩽ 0. Equivalently, |β1 − β2| ⩽ 1.

Whenever this condition is satisfied, the solution is given byξ1

ξ2

 = lim
h↘0

h log
(
e

4+β2
h − e

3+β1
h

)
− h log

(
e6/h − e4/h

)
h log

(
e

2+β1
h − e

1+β2
h

)
− h log

(
e6/h − e4/h

)
 =

4 + β2 − 6

2 + β1 − 6

 =

β2 − 2

β1 − 4

 .
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To go further

Of course, the bulky reasoning may be refined.

• Algorithms to solve linear problems may be transposed in the (max,+) semialgebra (for
instance, Euler scheme ⇒ the semi-lagrangian). Even tropical finite elements [McE06]!

(+, ·)

Classical
operations

Linear
systems

h log(·)
⇀↽

exp(·/h)

(⊕h,⊗h)

Intermediate
operations

Intermediate
values

h → 0

−→

(max,+)

Idempotent
operations

(max,+)
systems
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The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

What about transforming equations?

First order Consider the first-order transport equation

∂tu(t, x)− ⟨∇u(t, x), b(t, x)⟩ = 0.

Assume that u ⩾ 0, and define

v(t, x) = h log(u(t, x)), i.e. u(t, x) = exp(u(t, x)/h).

Then

∂tu =
exp(v/h)

h
∂tv, ∇u =

exp(v/h)

h
∇v, (3)

so that after dividing by exp(v/h)
h > 0, we get again ∂tv(t, x)− ⟨∇v(t, x), b(t, x)⟩ = 0.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
19 / 26



The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

What about transforming equations?

First order Consider the first-order transport equation

∂tu(t, x)− ⟨∇u(t, x), b(t, x)⟩ = 0.

Assume that u ⩾ 0, and define

v(t, x) = h log(u(t, x)), i.e. u(t, x) = exp(u(t, x)/h).

Then

∂tu =
exp(v/h)

h
∂tv, ∇u =

exp(v/h)

h
∇v, (3)

so that after dividing by exp(v/h)
h > 0, we get again ∂tv(t, x)− ⟨∇v(t, x), b(t, x)⟩ = 0.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
19 / 26



The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

What about transforming equations?

First order Consider the first-order transport equation

∂tu(t, x)− ⟨∇u(t, x), b(t, x)⟩ = 0.

Assume that u ⩾ 0, and define

v(t, x) = h log(u(t, x)), i.e. u(t, x) = exp(u(t, x)/h).

Then

∂tu =
exp(v/h)

h
∂tv, ∇u =

exp(v/h)

h
∇v, (3)

so that after dividing by exp(v/h)
h > 0, we get again ∂tv(t, x)− ⟨∇v(t, x), b(t, x)⟩ = 0.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
19 / 26



The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

What about transforming equations?

First order Consider the first-order transport equation

∂tu(t, x)− ⟨∇u(t, x), b(t, x)⟩ = 0.

Assume that u ⩾ 0, and define

v(t, x) = h log(u(t, x)), i.e. u(t, x) = exp(u(t, x)/h).

Then

∂tu =
exp(v/h)

h
∂tv, ∇u =

exp(v/h)

h
∇v, (3)

so that after dividing by exp(v/h)
h > 0, we get again ∂tv(t, x)− ⟨∇v(t, x), b(t, x)⟩ = 0.

Averil Prost Tropical heat
January 30, 2024 LMI-LMRS Doctoral seminar
19 / 26



The (max,+) semialgebra Link with linear algebra Finite-dim systems The heat equation

More transformations

Second order Consider now the heat equation

∂tu(t, x)− h∆u(t, x) = 0.

Let again v = h log(u), i.e. u = exp(v/h). Then in addition to (3), there holds

∆u =
exp(v/t)

h
∆v +

exp(v/t)

h2
|∇v|2 .

Hence
exp(v/h)

h
∂tv − h

(
exp(v/t)

h
∆v +

exp(v/t)

h2
|∇v|2

)
= 0,

or after simplification,

∂tv(t, x)− h∆v(t, x)− |∇v(t, x)|2 = 0.
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A link with viscosity solutions

Def 4 – (Historical intuition, see [CL83]) The vanishing viscosity solution of

∂tv − |∇v|2 = 0

is the limit when h goes to 0 of the (unique) solution of the equation

∂tv − h∆v − |∇v|2 = 0.

It may be characterized by two sign inequalities that maintain the validity of the comparison
principle coming from the elliptic perturbation.
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The heat kernel

Def 5 – Heat kernel Let Cd be a normalizing constant, and for any (t, x) ∈ R+ ×Rd,
define

µh
t,x :=

1√
Sdth

exp

(
−|· − x|2

2th

)
LRd ∈ P2(Rd).

In particular, µh
t,x −→

t↘0
δx narrowly and in the Wasserstein topology.

Proposition – Kernel representation The (weak) solution of the heat equation
∂tu(t, x)− h∆u(t, x) = 0 with initial value u0 is given by

u(t, x) =

∫
y∈Rd

u0(y)dµ
h
t,x(y).
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Going through the transformation

Let u0 > 0 upper bounded and continuous.

Denoting again v = h log (u), and v0 = h log(u0),

v(t, x) = h log

(∫
y∈Rd

exp

(
v0(y)

h

)
dµh

t,x(y)

)

= h log

(
1√
Cdth

∫
y∈Rd

exp

(
v0(y)

h

)
exp

(
−|y − x|2

2th

)
dy

)

= −h

2
log (Cdth) + h log

(∫
y∈Rd

exp

(
1

h

[
v0(y)−

|y − x|2

2t

])
dy

)

−→
h↘0

0 + sup
y∈Rd

[
v0(y)−

|y − x|2

2t

]
.
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Control interpretation

Let

m̂t,x := −|· − x|2

2t
, µ̂t,x(B) := sup

y∈B
m̂t,x(y) ∀B ⊂ Rd.

In the vocabulary of [DMD99], m̂t,x is the density of the Maslov measure µ̂t,x.

Proposition – Value function [Lio82] The function

V (t, x) :=

∫ ⊕

y∈Rd

v0 ⊗ µ̂t,x = sup
y∈Rd

[
v0(y)−

|y − x|2

2t

]
(4)

is the unique viscosity solution of the Hamilton-Jacobi equation ∂tV − |∇V |2 = 0 such
that V (0, ·) = v0. The formula (4) is known as the Hopf-Lax formula.
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Going further

• In the case of the heat equation, Hopf-Cole transform. But Lax-Hopf formula valid for a
larger class of HJ equations of the type

∂tV (t, x) +H (x,∇V (t, x)) = 0,

provided the Hamiltonian H is concave in its second variable (+ regularity conditions).

• Maslov measures may be used to recast the Lax-Hopf semigroup as the conditional
expectation of Maslov stochastic processes.

• Using the Hopf-Lax semigroup, Maslov defined weak solution by "duality", in the spirit of

⟨u, φ⟩⊕ = ⟨u0, S∗
t φ⟩⊕ ,

where S∗
t is a "dual" semigroup acting on test functions φ [KM97, Definition 3.1].
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Conclusion

(+, ·)

Classical
operations

Linear
systems

Heat equation

h log(·)
⇀↽

exp(·/h)

Hopf-Cole
−→

(⊕h,⊗h)

Intermediate
operations

Intermediate
values

Viscous
Eikonal
equation

h → 0

−→

(max,+)

Idempotent
operations

(max,+)
systems

Eikonal
equation
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Thank you!
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