Tropical heat

The eikonal equation as a (max, +) version of the Poisson equation

Averil Prost

January 30, 2024
LMI-LMRS Doctoral seminar

INSA' in anr ${ }^{\circ}$

Table of Contents

The (max, +) semialgebra

Link with linear algebra

An application: finite-dimensional (max, +) system

The heat equation

The (max, +) idempotent calculus

Let $\Omega:=\mathbb{R} \cup\{-\infty\}$.
Def 1 - Operations For $a, b \in \Omega$, define

$$
a \oplus b:=\max (a, b), \quad a \otimes b:=a+b
$$

The (max, +) idempotent calculus

Let $\Omega:=\mathbb{R} \cup\{-\infty\}$.
Def 1 - Operations For $a, b \in \Omega$, define

$$
a \oplus b:=\max (a, b), \quad a \otimes b:=a+b
$$

Both operations are commutative and associative, and

$$
a \otimes(b \oplus c)
$$

The (max, +) idempotent calculus

Let $\Omega:=\mathbb{R} \cup\{-\infty\}$.
Def 1 - Operations For $a, b \in \Omega$, define

$$
a \oplus b:=\max (a, b), \quad a \otimes b:=a+b
$$

Both operations are commutative and associative, and

$$
a \otimes(b \oplus c)=a+\max (b, c)
$$

The (max, +) idempotent calculus

Let $\Omega:=\mathbb{R} \cup\{-\infty\}$.
Def 1 - Operations For $a, b \in \Omega$, define

$$
a \oplus b:=\max (a, b), \quad a \otimes b:=a+b
$$

Both operations are commutative and associative, and

$$
a \otimes(b \oplus c)=a+\max (b, c)=\max (a+b, a+c)
$$

The (max, +) idempotent calculus

Let $\Omega:=\mathbb{R} \cup\{-\infty\}$.
Def 1 - Operations For $a, b \in \Omega$, define

$$
a \oplus b:=\max (a, b), \quad a \otimes b:=a+b
$$

Both operations are commutative and associative, and

$$
a \otimes(b \oplus c)=a+\max (b, c)=\max (a+b, a+c)=(a \otimes b) \oplus(a \otimes c)
$$

"Idempotent" since $a \oplus a=a$.

The (max, +) idempotent calculus

Let $\Omega:=\mathbb{R} \cup\{-\infty\}$.
Def 1 - Operations For $a, b \in \Omega$, define

$$
a \oplus b:=\max (a, b), \quad a \otimes b:=a+b
$$

Both operations are commutative and associative, and

$$
a \otimes(b \oplus c)=a+\max (b, c)=\max (a+b, a+c)=(a \otimes b) \oplus(a \otimes c) .
$$

"Idempotent" since $a \oplus a=a$. Define $\mathbb{D}:=-\infty$ and $\mathbb{I}:=0$. Then

$$
\mathbb{D} \oplus a=\max (-\infty, a)=a,
$$

The (max, +) idempotent calculus

Let $\Omega:=\mathbb{R} \cup\{-\infty\}$.
Def 1 - Operations For $a, b \in \Omega$, define

$$
a \oplus b:=\max (a, b), \quad a \otimes b:=a+b
$$

Both operations are commutative and associative, and

$$
a \otimes(b \oplus c)=a+\max (b, c)=\max (a+b, a+c)=(a \otimes b) \oplus(a \otimes c) .
$$

"Idempotent" since $a \oplus a=a$. Define $\mathbb{C}:=-\infty$ and $\mathbb{I}:=0$. Then

$$
\mathbb{D} \oplus a=\max (-\infty, a)=a, \quad \mathbb{D} \otimes a=-\infty+a=\mathbb{D},
$$

The (max, +) idempotent calculus

Let $\Omega:=\mathbb{R} \cup\{-\infty\}$.
Def 1 - Operations For $a, b \in \Omega$, define

$$
a \oplus b:=\max (a, b), \quad a \otimes b:=a+b
$$

Both operations are commutative and associative, and

$$
a \otimes(b \oplus c)=a+\max (b, c)=\max (a+b, a+c)=(a \otimes b) \oplus(a \otimes c)
$$

"Idempotent" since $a \oplus a=a$. Define $\mathbb{C}:=-\infty$ and $\mathbb{I}:=0$. Then

$$
\mathbb{D} \oplus a=\max (-\infty, a)=a, \quad \mathbb{D} \otimes a=-\infty+a=\mathbb{D}, \quad \mathbb{I} \otimes a=a+0=a
$$

The (max, +) idempotent calculus

Let $\Omega:=\mathbb{R} \cup\{-\infty\}$.
Def 1 - Operations For $a, b \in \Omega$, define

$$
a \oplus b:=\max (a, b), \quad a \otimes b:=a+b
$$

Both operations are commutative and associative, and

$$
a \otimes(b \oplus c)=a+\max (b, c)=\max (a+b, a+c)=(a \otimes b) \oplus(a \otimes c) .
$$

"Idempotent" since $a \oplus a=a$. Define $\mathbb{D}:=-\infty$ and $\mathbb{I}:=0$. Then

$$
\mathbb{D} \oplus a=\max (-\infty, a)=a, \quad \mathbb{D} \otimes a=-\infty+a=\mathbb{O}, \quad \mathbb{I} \otimes a=a+0=a
$$

Then $(\Omega, \oplus, \otimes, \mathbb{D}, \mathbb{I})$ is a semiring (ring without additive inverse).

Integrals

Endow Ω with the application $\mathbb{d}(a, b):=\left|e^{a}-e^{b}\right|$, and let $f: \Omega \rightarrow \Omega$ be continuous. Then

$$
\sum_{i \in \mathbb{Z} \cup\{-\infty\}}^{\oplus} f(h i)=\max _{i \in \mathbb{Z} \cup\{-\infty\}} f(h i) \xrightarrow[h \searrow 0]{\longrightarrow} \sup _{x \in \Omega=\mathbb{R} \cup\{-\infty\}} f(x)
$$

Integrals

Endow Ω with the application $\mathbb{d}(a, b):=\left|e^{a}-e^{b}\right|$, and let $f: \Omega \rightarrow \Omega$ be continuous. Then

$$
\sum_{i \in \mathbb{Z} \cup\{-\infty\}}^{\oplus} f(h i)=\max _{i \in \mathbb{Z} \cup\{-\infty\}} f(h i) \overrightarrow{h \searrow 0} \sup _{x \in \Omega=\mathbb{R} \cup\{-\infty\}} f(x) .
$$

Def 2 - Integral Define

$$
\int_{x \in \Omega}^{\oplus} f(x):=\sup _{x \in \Omega} f(x)
$$

Integrals

Endow Ω with the application $\mathbb{d}(a, b):=\left|e^{a}-e^{b}\right|$, and let $f: \Omega \rightarrow \Omega$ be continuous. Then

$$
\sum_{i \in \mathbb{Z} \cup\{-\infty\}}^{\oplus} f(h i)=\max _{i \in \mathbb{Z} \cup\{-\infty\}} f(h i) \underset{h \searrow 0}{\longrightarrow} \sup _{x \in \Omega=\mathbb{R} \cup\{-\infty\}} f(x) .
$$

Def 2 - Integral Define

$$
\int_{x \in \Omega}^{\oplus} f(x):=\sup _{x \in \Omega} f(x)
$$

In particular, the scalar product becomes

$$
\langle f, g\rangle_{\oplus}=\int_{x \in \Omega}^{\oplus} f(x) \otimes g(x)=\sup _{x \in \Omega} f(x)+g(x)
$$

People and motivation

- Several names: tropical analysis, idempotent or (max, +) algebra.

People and motivation

- Several names: tropical analysis, idempotent or (max, +) algebra.
- 1997: book from Kolokolstov and Maslov [KM97]

People and motivation

- Several names: tropical analysis, idempotent or (max, +) algebra.
- 1997: book from Kolokolstov and Maslov [KM97]
- 2006: numerical book from McEneaney [McE06]

People and motivation

- Several names: tropical analysis, idempotent or (max, +) algebra.
- 1997: book from Kolokolstov and Maslov [KM97]
- 2006: numerical book from McEneaney [McE06]
- In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)

People and motivation

- Several names: tropical analysis, idempotent or (max, +) algebra.
- 1997: book from Kolokolstov and Maslov [KM97]
- 2006: numerical book from McEneaney [McE06]
- In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)
- Currently a topic in image processing (morphological operations, [Ang15, Ang22]) and physics ([de]quantization, [Lit12]).

People and motivation

- Several names: tropical analysis, idempotent or (max, +) algebra.
- 1997: book from Kolokolstov and Maslov [KM97]
- 2006: numerical book from McEneaney [McE06]
- In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)
- Currently a topic in image processing (morphological operations, [Ang15, Ang22]) and physics ([de]quantization, [Lit12]).

Motivation Ease the study of optimization problems by directly working with the "natural" operations of (here) maximization and sum of gains.

Table of Contents

The (max,+) semialgebra

Link with linear algebra

An application: finite-dimensional (max, +) system

The heat equation

An elementary result

Proposition - Let $f>g$. Then

$$
\lim _{h \searrow 0} h \log \left(e^{f / h}+e^{g / h}\right)=\lim _{h \searrow 0} h \log \left(e^{f / h}-e^{g / h}\right)=f .
$$

An elementary result

Proposition - Let $f>g$. Then

$$
\lim _{h \searrow 0} h \log \left(e^{f / h}+e^{g / h}\right)=\lim _{h \searrow 0} h \log \left(e^{f / h}-e^{g / h}\right)=f .
$$

Readily visible by noticing that

$$
e^{f / h} \pm e^{g / h}=e^{f / h}\left(1 \pm e^{(g-f) / h}\right)
$$

An elementary result

Proposition - Let $f>g$. Then

$$
\lim _{h \searrow 0} h \log \left(e^{f / h}+e^{g / h}\right)=\lim _{h \searrow 0} h \log \left(e^{f / h}-e^{g / h}\right)=f
$$

Readily visible by noticing that

$$
e^{f / h} \pm e^{g / h}=e^{f / h}\left(1 \pm e^{(g-f) / h}\right)
$$

Going further, for any upper bounded and continuous f, there holds

$$
\lim _{h \searrow 0} h \log \left(\int_{x \in \mathbb{R}^{d}} \exp \left(\frac{f(x)}{h}\right) d x\right)=\sup _{x \in \mathbb{R}^{d}} f(x) .
$$

Logarithm transform

Def 3 - Logarithm trick For $h>0$, consider the operations

$$
a \otimes_{h} b:=h \log \left(e^{a / h} \cdot e^{b / h}\right), \quad a \oplus_{h} b:=h \log \left(e^{a / h}+e^{b / h}\right)
$$

Logarithm transform

Def 3 - Logarithm trick For $h>0$, consider the operations

$$
a \otimes_{h} b:=h \log \left(e^{a / h} \cdot e^{b / h}\right), \quad a \oplus_{h} b:=h \log \left(e^{a / h}+e^{b / h}\right)
$$

Then

$$
a \otimes_{h} b=a+b, \quad a \oplus_{h} b \underset{h \searrow 0}{\longrightarrow} \max (a, b)
$$

Logarithm transform

Def 3 - Logarithm trick For $h>0$, consider the operations

$$
a \otimes_{h} b:=h \log \left(e^{a / h} \cdot e^{b / h}\right), \quad a \oplus_{h} b:=h \log \left(e^{a / h}+e^{b / h}\right)
$$

Then

$$
a \otimes_{h} b=a+b, \quad a \oplus_{h} b \underset{h \searrow 0}{\longrightarrow} \max (a, b) .
$$

We could go further with this game, for instance with

$$
a^{\wedge}{ }^{\oplus} b:=\lim _{h \searrow 0} h \log \left(\exp (a / h)^{\wedge} \exp (b / h)\right)
$$

Logarithm transform

Def 3 - Logarithm trick For $h>0$, consider the operations

$$
a \otimes_{h} b:=h \log \left(e^{a / h} \cdot e^{b / h}\right), \quad a \oplus_{h} b:=h \log \left(e^{a / h}+e^{b / h}\right)
$$

Then

$$
a \otimes_{h} b=a+b, \quad a \oplus_{h} b \underset{h \searrow 0}{\longrightarrow} \max (a, b)
$$

We could go further with this game, for instance with

$$
a^{\wedge} \oplus b:=\lim _{h \searrow 0} h \log \left(\exp (a / h)^{\wedge} \exp (b / h)\right)= \begin{cases}a & b=0 \\ \mathbb{I}=0 & b<0 \\ +\infty & b>0\end{cases}
$$

Dialog between $(+, \cdot)$ and (max,+$)$

$(+, \cdot)$

Classical

 operations
Dialog between $(+, \cdot)$ and $(\max ,+)$

$(+, \cdot)$
Classical operations

$\left(\oplus_{h}, \otimes_{h}\right)$
Intermediate operations

Dialog between $(+, \cdot)$ and $(\max ,+)$

$(+, \cdot)$	$h \log (\cdot)$
Classical operations	$\xrightarrow{\longrightarrow}$

Dialog between $(+, \cdot)$ and $(\max ,+)$

$(+, \cdot)$	$h \log (\cdot)$	
Classical operations	$\underset{\sim}{\rightleftharpoons} \underset{\exp (\cdot / h)}{\rightleftharpoons}$	Intermediate operations

Dialog between $(+, \cdot)$ and $(\max ,+)$

$(+, \cdot)$	$\begin{gathered} h \log (\cdot) \\ \underset{\exp (\cdot / h)}{\rightleftharpoons} \end{gathered}$	$\left(\oplus_{h}, \otimes_{h}\right)$	$h \rightarrow 0$	(max, +)
Classical operations		Intermediate operations		Idempotent operations

Linearity

Let $\mathrm{I}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be linear, and denote

$$
\Phi_{h}(x):=h \log \circ \mathrm{I} \circ \exp (x / h) .
$$

Linearity

Let $\mathrm{I}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be linear, and denote

$$
\Phi_{h}(x):=h \log \circ \mathrm{I} \circ \exp (x / h) .
$$

Here all the operations are understood coordinate by coordinate. Then

$$
\Phi_{h}\left(a \oplus_{h} b\right)
$$

Linearity

Let $\mathrm{I}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be linear, and denote

$$
\Phi_{h}(x):=h \log \circ \mathrm{I} \circ \exp (x / h) .
$$

Here all the operations are understood coordinate by coordinate. Then

$$
\Phi_{h}\left(a \oplus_{h} b\right)=h \log \circ \mathrm{I} \circ e^{\frac{a \oplus \oplus^{b}}{h}}
$$

Linearity

Let $\mathrm{I}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be linear, and denote

$$
\Phi_{h}(x):=h \log \circ \mathrm{I} \circ \exp (x / h) .
$$

Here all the operations are understood coordinate by coordinate. Then

$$
\Phi_{h}\left(a \oplus_{h} b\right)=h \log \circ \mathrm{I} \circ e^{\frac{a \oplus_{h} b}{h}}=h \log \circ \mathrm{I}\left(e^{a / h}+e^{b / h}\right)
$$

Linearity

Let $\mathrm{I}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be linear, and denote

$$
\Phi_{h}(x):=h \log \circ \mathrm{I} \circ \exp (x / h) .
$$

Here all the operations are understood coordinate by coordinate. Then

$$
\Phi_{h}\left(a \oplus_{h} b\right)=h \log \circ \mathrm{I} \circ e^{\frac{a \oplus_{h} b}{h}}=h \log \circ \mathrm{I}\left(e^{a / h}+e^{b / h}\right)=h \log \left(\mathrm{I} e^{a / h}+\mathrm{I} e^{b / h}\right)
$$

Linearity

Let $\mathrm{I}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be linear, and denote

$$
\Phi_{h}(x):=h \log \circ \mathrm{I} \circ \exp (x / h) .
$$

Here all the operations are understood coordinate by coordinate. Then

$$
\begin{aligned}
\Phi_{h}\left(a \oplus_{h} b\right) & =h \log \circ \mathrm{I} \circ e^{\frac{a \oplus_{h} b}{h}}=h \log \circ \mathrm{I}\left(e^{a / h}+e^{b / h}\right)=h \log \left(\mathrm{I} e^{a / h}+\mathrm{I} e^{b / h}\right) \\
& =h \log \left(e^{\frac{\Phi_{h}(a)}{h}}+e^{\frac{\Phi_{h}(b)}{h}}\right)
\end{aligned}
$$

Linearity

Let $\mathrm{I}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be linear, and denote

$$
\Phi_{h}(x):=h \log \circ \mathrm{I} \circ \exp (x / h) .
$$

Here all the operations are understood coordinate by coordinate. Then

$$
\begin{aligned}
\Phi_{h}\left(a \oplus_{h} b\right) & =h \log \circ \mathrm{I} \circ e^{\frac{a \oplus_{h} b}{h}}=h \log \circ \mathrm{I}\left(e^{a / h}+e^{b / h}\right)=h \log \left(\mathrm{I} e^{a / h}+\mathrm{I} e^{b / h}\right) \\
& =h \log \left(e^{\frac{\Phi_{h}(a)}{h}}+e^{\frac{\Phi_{h}(b)}{h}}\right)=\Phi_{h}(a) \oplus_{h} \Phi_{h}(b)
\end{aligned}
$$

Linearity

Let $\mathrm{I}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be linear, and denote

$$
\Phi_{h}(x):=h \log \circ \mathrm{I} \circ \exp (x / h) .
$$

Here all the operations are understood coordinate by coordinate. Then

$$
\begin{aligned}
\Phi_{h}\left(a \oplus_{h} b\right) & =h \log \circ \mathrm{I} \circ e^{\frac{a_{\oplus_{h} b}}{h}}=h \log \circ \mathrm{I}\left(e^{a / h}+e^{b / h}\right)=h \log \left(\mathrm{I} e^{a / h}+\mathrm{I} e^{b / h}\right) \\
& =h \log \left(e^{\frac{\Phi_{h}(a)}{h}}+e^{\frac{\Phi_{h}(b)}{h}}\right)=\Phi_{h}(a) \oplus_{h} \Phi_{h}(b)
\end{aligned}
$$

Similarly,

$$
\Phi_{h}\left(a \otimes_{h} b\right)=a \otimes_{h} \Phi_{h}(b)=\Phi_{h}(a) \otimes_{h} b=a \otimes b \otimes \Phi_{h}(\mathbb{I}) .
$$

Linearity

Let $\mathrm{I}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be linear, and denote

$$
\Phi_{h}(x):=h \log \circ \mathrm{I} \circ \exp (x / h) .
$$

Here all the operations are understood coordinate by coordinate. Then

$$
\begin{aligned}
\Phi_{h}\left(a \oplus_{h} b\right) & =h \log \circ \mathrm{I} \circ e^{\frac{a_{\oplus_{h} b}}{h}}=h \log \circ \mathrm{I}\left(e^{a / h}+e^{b / h}\right)=h \log \left(\mathrm{I} e^{a / h}+\mathrm{I} e^{b / h}\right) \\
& =h \log \left(e^{\frac{\Phi_{h}(a)}{h}}+e^{\frac{\Phi_{h}(b)}{h}}\right)=\Phi_{h}(a) \oplus_{h} \Phi_{h}(b)
\end{aligned}
$$

Similarly,

$$
\Phi_{h}\left(a \otimes_{h} b\right)=a \otimes_{h} \Phi_{h}(b)=\Phi_{h}(a) \otimes_{h} b=a \otimes b \otimes \Phi_{h}(\mathbb{I}) .
$$

The limit operator $\Phi:=\lim _{h \searrow 0} \Phi_{h}$ is (max, +)-linear.

Example

Let $d=2$ and $I(x)=A x$, where $A:=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$. Then
$\Phi_{h}(x)=h \log \circ \mathrm{I} \circ \exp (x / h)$

Example

Let $d=2$ and $I(x)=A x$, where $A:=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$. Then

$$
\Phi_{h}(x)=h \log \circ \mathrm{I} \circ \exp (x / h)=h \log \binom{\exp \left(x_{1} / h\right)+\exp \left(x_{2} / h\right)}{2 \exp \left(x_{1} / h\right)}
$$

Example

Let $d=2$ and $I(x)=A x$, where $A:=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$. Then

$$
\Phi_{h}(x)=h \log \circ \mathrm{I} \circ \exp (x / h)=h \log \binom{\exp \left(x_{1} / h\right)+\exp \left(x_{2} / h\right)}{2 \exp \left(x_{1} / h\right)} \underset{h \searrow 0}{\longrightarrow}\binom{\max \left(x_{1}, x_{2}\right)}{x_{1}}
$$

Example

Let $d=2$ and $I(x)=A x$, where $A:=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$. Then
$\Phi_{h}(x)=h \log \circ \mathrm{I} \circ \exp (x / h)=h \log \binom{\exp \left(x_{1} / h\right)+\exp \left(x_{2} / h\right)}{2 \exp \left(x_{1} / h\right)} \underset{h \searrow 0}{\longrightarrow}\binom{\max \left(x_{1}, x_{2}\right)}{x_{1}}$.
Define $\Phi(x):=\binom{\max \left(x_{1}, x_{2}\right)}{x_{1}}:$ then for any $\lambda \in \mathbb{R},\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$,

Example

Let $d=2$ and $I(x)=A x$, where $A:=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$. Then
$\Phi_{h}(x)=h \log \circ \mathrm{I} \circ \exp (x / h)=h \log \binom{\exp \left(x_{1} / h\right)+\exp \left(x_{2} / h\right)}{2 \exp \left(x_{1} / h\right)} \underset{h \searrow 0}{\longrightarrow}\binom{\max \left(x_{1}, x_{2}\right)}{x_{1}}$.
Define $\Phi(x):=\binom{\max \left(x_{1}, x_{2}\right)}{x_{1}}:$ then for any $\lambda \in \mathbb{R},\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$,
$\Phi(\lambda \otimes x \oplus y)=\Phi\binom{\max \left(\lambda+x_{1}, y_{1}\right)}{\max \left(\lambda+x_{2}, y_{2}\right)}$

Example

Let $d=2$ and $I(x)=A x$, where $A:=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$. Then
$\Phi_{h}(x)=h \log \circ \mathrm{I} \circ \exp (x / h)=h \log \binom{\exp \left(x_{1} / h\right)+\exp \left(x_{2} / h\right)}{2 \exp \left(x_{1} / h\right)} \underset{h \searrow 0}{\longrightarrow}\binom{\max \left(x_{1}, x_{2}\right)}{x_{1}}$.
Define $\Phi(x):=\binom{\max \left(x_{1}, x_{2}\right)}{x_{1}}:$ then for any $\lambda \in \mathbb{R},\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$,
$\Phi(\lambda \otimes x \oplus y)=\Phi\binom{\max \left(\lambda+x_{1}, y_{1}\right)}{\max \left(\lambda+x_{2}, y_{2}\right)}=\binom{\max \left(\lambda+x_{1}, y_{1}, \lambda+x_{2}, y_{2}\right)}{\max \left(\lambda+x_{1}, y_{1}\right)}$

Example

Let $d=2$ and $I(x)=A x$, where $A:=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$. Then
$\Phi_{h}(x)=h \log \circ \mathrm{I} \circ \exp (x / h)=h \log \binom{\exp \left(x_{1} / h\right)+\exp \left(x_{2} / h\right)}{2 \exp \left(x_{1} / h\right)} \underset{h \searrow 0}{\longrightarrow}\binom{\max \left(x_{1}, x_{2}\right)}{x_{1}}$.
Define $\Phi(x):=\binom{\max \left(x_{1}, x_{2}\right)}{x_{1}}:$ then for any $\lambda \in \mathbb{R},\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$,
$\Phi(\lambda \otimes x \oplus y)=\Phi\binom{\max \left(\lambda+x_{1}, y_{1}\right)}{\max \left(\lambda+x_{2}, y_{2}\right)}=\binom{\max \left(\lambda+x_{1}, y_{1}, \lambda+x_{2}, y_{2}\right)}{\max \left(\lambda+x_{1}, y_{1}\right)}=\lambda \otimes \Phi(x) \oplus \Phi(y)$.

Table of Contents

The (max,+) semialgebra

Link with linear algebra

An application: finite-dimensional (max, +) system

The heat equation

Setting

Consider the (max, +) system

$$
\begin{equation*}
\Pi \otimes \xi=\beta \tag{1}
\end{equation*}
$$

where $\Pi \in \mathbb{M}_{2,2}$ is a matrix, $\xi, \beta \in \mathbb{R}^{2}$ are vectors with β given, and for each $i \in \llbracket 1,2 \rrbracket$,

$$
(\Pi \otimes \xi)_{i}=\sum_{j \in \llbracket 1,2 \rrbracket}^{\oplus} \Pi_{i j} \otimes \xi_{j}=\max _{j \in \llbracket 1,2 \rrbracket} \Pi_{i j}+\xi_{j} .
$$

Setting

Consider the (max, +) system

$$
\begin{equation*}
\Pi \otimes \xi=\beta \tag{1}
\end{equation*}
$$

where $\Pi \in \mathbb{M}_{2,2}$ is a matrix, $\xi, \beta \in \mathbb{R}^{2}$ are vectors with β given, and for each $i \in \llbracket 1,2 \rrbracket$,

$$
(\Pi \otimes \xi)_{i}=\sum_{j \in \llbracket 1,2 \rrbracket}^{\oplus} \Pi_{i j} \otimes \xi_{j}=\max _{j \in \llbracket 1,2 \rrbracket} \Pi_{i j}+\xi_{j} .
$$

In which cases can we get a solution to (1) by using the link with classical algebra?

Transformation into linear variables

For each $h>0$, define $P \in \mathbb{M}_{2,2}$ and $x, b \in \mathbb{R}^{2}$ by

$$
P_{i j}^{h}:=\exp \left(\Pi_{i j} / h\right), \quad x_{j}^{h}:=\exp \left(\xi_{j} / h\right), \quad b_{i}^{h}:=\exp \left(\beta_{i} / h\right)
$$

Transformation into linear variables

For each $h>0$, define $P \in \mathbb{M}_{2,2}$ and $x, b \in \mathbb{R}^{2}$ by

$$
P_{i j}^{h}:=\exp \left(\Pi_{i j} / h\right), \quad x_{j}^{h}:=\exp \left(\xi_{j} / h\right), \quad b_{i}^{h}:=\exp \left(\beta_{i} / h\right)
$$

The linear system $P^{h} x^{h}=b^{h}$ has a solution if $\operatorname{det}\left(P^{h}\right) \neq 0$, i.e.

$$
P_{11}^{h} P_{22}^{h}-P_{12}^{h} P_{21}^{h} \neq 0 \quad \Longleftrightarrow \quad \exp \left(\frac{\Pi_{11}+\Pi_{22}}{h}\right) \neq \exp \left(\frac{\Pi_{12}+\Pi_{21}}{h}\right)
$$

Transformation into linear variables

For each $h>0$, define $P \in \mathbb{M}_{2,2}$ and $x, b \in \mathbb{R}^{2}$ by

$$
P_{i j}^{h}:=\exp \left(\Pi_{i j} / h\right), \quad x_{j}^{h}:=\exp \left(\xi_{j} / h\right), \quad b_{i}^{h}:=\exp \left(\beta_{i} / h\right)
$$

The linear system $P^{h} x^{h}=b^{h}$ has a solution if $\operatorname{det}\left(P^{h}\right) \neq 0$, i.e.

$$
P_{11}^{h} P_{22}^{h}-P_{12}^{h} P_{21}^{h} \neq 0 \quad \Longleftrightarrow \quad \exp \left(\frac{\Pi_{11}+\Pi_{22}}{h}\right) \neq \exp \left(\frac{\Pi_{12}+\Pi_{21}}{h}\right)
$$

Assume that $\Pi_{11}+\Pi_{22} \neq \Pi_{12}+\Pi_{21}$, and consider $x^{h}=\left(P^{h}\right)^{-1} b^{h}$ solving $P^{h} x^{h}=b^{h}$.

Transformation into linear variables

For each $h>0$, define $P \in \mathbb{M}_{2,2}$ and $x, b \in \mathbb{R}^{2}$ by

$$
P_{i j}^{h}:=\exp \left(\Pi_{i j} / h\right), \quad x_{j}^{h}:=\exp \left(\xi_{j} / h\right), \quad b_{i}^{h}:=\exp \left(\beta_{i} / h\right)
$$

The linear system $P^{h} x^{h}=b^{h}$ has a solution if $\operatorname{det}\left(P^{h}\right) \neq 0$, i.e.

$$
P_{11}^{h} P_{22}^{h}-P_{12}^{h} P_{21}^{h} \neq 0 \quad \Longleftrightarrow \quad \exp \left(\frac{\Pi_{11}+\Pi_{22}}{h}\right) \neq \exp \left(\frac{\Pi_{12}+\Pi_{21}}{h}\right)
$$

Assume that $\Pi_{11}+\Pi_{22} \neq \Pi_{12}+\Pi_{21}$, and consider $x^{h}=\left(P^{h}\right)^{-1} b^{h}$ solving $P^{h} x^{h}=b^{h}$. Then

$$
\beta=h \log \left(b^{h}\right)
$$

Transformation into linear variables

For each $h>0$, define $P \in \mathbb{M}_{2,2}$ and $x, b \in \mathbb{R}^{2}$ by

$$
P_{i j}^{h}:=\exp \left(\Pi_{i j} / h\right), \quad x_{j}^{h}:=\exp \left(\xi_{j} / h\right), \quad b_{i}^{h}:=\exp \left(\beta_{i} / h\right)
$$

The linear system $P^{h} x^{h}=b^{h}$ has a solution if $\operatorname{det}\left(P^{h}\right) \neq 0$, i.e.

$$
P_{11}^{h} P_{22}^{h}-P_{12}^{h} P_{21}^{h} \neq 0 \quad \Longleftrightarrow \quad \exp \left(\frac{\Pi_{11}+\Pi_{22}}{h}\right) \neq \exp \left(\frac{\Pi_{12}+\Pi_{21}}{h}\right)
$$

Assume that $\Pi_{11}+\Pi_{22} \neq \Pi_{12}+\Pi_{21}$, and consider $x^{h}=\left(P^{h}\right)^{-1} b^{h}$ solving $P^{h} x^{h}=b^{h}$. Then

$$
\beta=h \log \left(b^{h}\right)=h \log \left(P^{h} x^{h}\right)
$$

Transformation into linear variables

For each $h>0$, define $P \in \mathbb{M}_{2,2}$ and $x, b \in \mathbb{R}^{2}$ by

$$
P_{i j}^{h}:=\exp \left(\Pi_{i j} / h\right), \quad x_{j}^{h}:=\exp \left(\xi_{j} / h\right), \quad b_{i}^{h}:=\exp \left(\beta_{i} / h\right)
$$

The linear system $P^{h} x^{h}=b^{h}$ has a solution if $\operatorname{det}\left(P^{h}\right) \neq 0$, i.e.

$$
P_{11}^{h} P_{22}^{h}-P_{12}^{h} P_{21}^{h} \neq 0 \quad \Longleftrightarrow \quad \exp \left(\frac{\Pi_{11}+\Pi_{22}}{h}\right) \neq \exp \left(\frac{\Pi_{12}+\Pi_{21}}{h}\right)
$$

Assume that $\Pi_{11}+\Pi_{22} \neq \Pi_{12}+\Pi_{21}$, and consider $x^{h}=\left(P^{h}\right)^{-1} b^{h}$ solving $P^{h} x^{h}=b^{h}$. Then

$$
\beta=h \log \left(b^{h}\right)=h \log \left(P^{h} x^{h}\right)=h \log \left(\sum_{j \in \llbracket 1,2 \rrbracket} \exp \left(\frac{\Pi_{i j}+\xi_{j}}{h}\right)\right)
$$

Transformation into linear variables

For each $h>0$, define $P \in \mathbb{M}_{2,2}$ and $x, b \in \mathbb{R}^{2}$ by

$$
P_{i j}^{h}:=\exp \left(\Pi_{i j} / h\right), \quad x_{j}^{h}:=\exp \left(\xi_{j} / h\right), \quad b_{i}^{h}:=\exp \left(\beta_{i} / h\right)
$$

The linear system $P^{h} x^{h}=b^{h}$ has a solution if $\operatorname{det}\left(P^{h}\right) \neq 0$, i.e.

$$
P_{11}^{h} P_{22}^{h}-P_{12}^{h} P_{21}^{h} \neq 0 \quad \Longleftrightarrow \quad \exp \left(\frac{\Pi_{11}+\Pi_{22}}{h}\right) \neq \exp \left(\frac{\Pi_{12}+\Pi_{21}}{h}\right)
$$

Assume that $\Pi_{11}+\Pi_{22} \neq \Pi_{12}+\Pi_{21}$, and consider $x^{h}=\left(P^{h}\right)^{-1} b^{h}$ solving $P^{h} x^{h}=b^{h}$. Then

$$
\beta=h \log \left(b^{h}\right)=h \log \left(P^{h} x^{h}\right)=h \log \left(\sum_{j \in \llbracket 1,2 \rrbracket} \exp \left(\frac{\Pi_{i j}+\xi_{j}}{h}\right)\right) \underset{h \searrow 0}{\longrightarrow} \Pi \otimes \xi
$$

Going back

Thus if we can apply $h \log (\cdot)$ to x^{h} and pass to the limit, we would get a solution.

Going back

Thus if we can apply $h \log (\cdot)$ to x^{h} and pass to the limit, we would get a solution. Assume

$$
\begin{equation*}
\forall i \in \llbracket 1,2 \rrbracket, \quad x_{i}^{h}=\left(\left(P^{h}\right)^{-1} b\right)_{i} \geqslant 0 . \tag{2}
\end{equation*}
$$

Going back

Thus if we can apply $h \log (\cdot)$ to x^{h} and pass to the limit, we would get a solution. Assume

$$
\begin{equation*}
\forall i \in \llbracket 1,2 \rrbracket, \quad x_{i}^{h}=\left(\left(P^{h}\right)^{-1} b\right)_{i} \geqslant 0 . \tag{2}
\end{equation*}
$$

One also obtains that $\left(x^{h}\right)_{h}$ is bounded uniformly in h. By compactness, (1) admits solutions.

Going back

Thus if we can apply $h \log (\cdot)$ to x^{h} and pass to the limit, we would get a solution. Assume

$$
\begin{equation*}
\forall i \in \llbracket 1,2 \rrbracket, \quad x_{i}^{h}=\left(\left(P^{h}\right)^{-1} b\right)_{i} \geqslant 0 . \tag{2}
\end{equation*}
$$

One also obtains that $\left(x^{h}\right)_{h}$ is bounded uniformly in h. By compactness, (1) admits solutions.
Example Consider for instance

$$
\Pi=\left(\begin{array}{ll}
\mathbb{I} & \mathbb{0} \\
\mathbb{O} & \mathbb{I}
\end{array}\right)=\left(\begin{array}{cc}
0 & -\infty \\
-\infty & 0
\end{array}\right)
$$

Going back

Thus if we can apply $h \log (\cdot)$ to x^{h} and pass to the limit, we would get a solution. Assume

$$
\begin{equation*}
\forall i \in \llbracket 1,2 \rrbracket, \quad x_{i}^{h}=\left(\left(P^{h}\right)^{-1} b\right)_{i} \geqslant 0 . \tag{2}
\end{equation*}
$$

One also obtains that $\left(x^{h}\right)_{h}$ is bounded uniformly in h. By compactness, (1) admits solutions. Example Consider for instance

$$
\Pi=\left(\begin{array}{ll}
\mathbb{I} & \mathbb{0} \\
\mathbb{O} & \mathbb{I}
\end{array}\right)=\left(\begin{array}{cc}
0 & -\infty \\
-\infty & 0
\end{array}\right) \quad \Longrightarrow \quad P=\mathbb{I}_{d} .
$$

Going back

Thus if we can apply $h \log (\cdot)$ to x^{h} and pass to the limit, we would get a solution. Assume

$$
\begin{equation*}
\forall i \in \llbracket 1,2 \rrbracket, \quad x_{i}^{h}=\left(\left(P^{h}\right)^{-1} b\right)_{i} \geqslant 0 . \tag{2}
\end{equation*}
$$

One also obtains that $\left(x^{h}\right)_{h}$ is bounded uniformly in h. By compactness, (1) admits solutions.
Example Consider for instance

$$
\Pi=\left(\begin{array}{ll}
\mathbb{I} & \mathbb{0} \\
\mathbb{O} & \mathbb{I}
\end{array}\right)=\left(\begin{array}{cc}
0 & -\infty \\
-\infty & 0
\end{array}\right) \quad \Longrightarrow \quad P=\mathbb{I}_{d} .
$$

Then $P^{-1}=\mathbb{I}_{d}$. As (2) is satisfied for all $b=\exp (\beta / h)$, we obtain that $\xi=\beta$ solves (1).

Another example

Consider

$$
\Pi=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right)
$$

Another example

Consider

$$
\Pi=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \quad \Longrightarrow \quad P=\left(\begin{array}{cc}
e^{1 / h} & e^{2 / h} \\
e^{4 / h} & e^{3 / h}
\end{array}\right)
$$

Another example

Consider

$$
\Pi=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \quad \Longrightarrow \quad P=\left(\begin{array}{cc}
e^{1 / h} & e^{2 / h} \\
e^{4 / h} & e^{3 / h}
\end{array}\right), \quad P^{-1}=\frac{1}{e^{4 / h}-e^{6 / h}}\left(\begin{array}{cc}
e^{3 / h} & -e^{2 / h} \\
-e^{4 / h} & e^{1 / h}
\end{array}\right) .
$$

Another example

Consider

$$
\Pi=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \quad \Longrightarrow \quad P=\left(\begin{array}{cc}
e^{1 / h} & e^{2 / h} \\
e^{4 / h} & e^{3 / h}
\end{array}\right), \quad P^{-1}=\frac{1}{e^{4 / h}-e^{6 / h}}\left(\begin{array}{cc}
e^{3 / h} & -e^{2 / h} \\
-e^{4 / h} & e^{1 / h}
\end{array}\right)
$$

Since $\operatorname{det} P^{h}=e^{4 / h}-e^{6 / h}<0$, the condition (2) over β becomes

$$
e^{\frac{3+\beta_{1}}{h}}-e^{\frac{4+\beta_{2}}{h}} \leqslant 0, \quad \text { and } \quad-e^{\frac{2+\beta_{1}}{h}}+e^{\frac{1+\beta_{2}}{h}} \leqslant 0 .
$$

Another example

Consider

$$
\Pi=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \quad \Longrightarrow \quad P=\left(\begin{array}{cc}
e^{1 / h} & e^{2 / h} \\
e^{4 / h} & e^{3 / h}
\end{array}\right), \quad P^{-1}=\frac{1}{e^{4 / h}-e^{6 / h}}\left(\begin{array}{cc}
e^{3 / h} & -e^{2 / h} \\
-e^{4 / h} & e^{1 / h}
\end{array}\right)
$$

Since $\operatorname{det} P^{h}=e^{4 / h}-e^{6 / h}<0$, the condition (2) over β becomes

$$
e^{\frac{3+\beta_{1}}{h}}-e^{\frac{4+\beta_{2}}{h}} \leqslant 0, \quad \text { and } \quad-e^{\frac{2+\beta_{1}}{h}}+e^{\frac{1+\beta_{2}}{h}} \leqslant 0 . \quad \text { Equivalently, } \quad\left|\beta_{1}-\beta_{2}\right| \leqslant 1
$$

Another example

Consider

$$
\Pi=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \quad \Longrightarrow \quad P=\left(\begin{array}{cc}
e^{1 / h} & e^{2 / h} \\
e^{4 / h} & e^{3 / h}
\end{array}\right), \quad P^{-1}=\frac{1}{e^{4 / h}-e^{6 / h}}\left(\begin{array}{cc}
e^{3 / h} & -e^{2 / h} \\
-e^{4 / h} & e^{1 / h}
\end{array}\right)
$$

Since $\operatorname{det} P^{h}=e^{4 / h}-e^{6 / h}<0$, the condition (2) over β becomes

$$
e^{\frac{3+\beta_{1}}{h}}-e^{\frac{4+\beta_{2}}{h}} \leqslant 0, \quad \text { and } \quad-e^{\frac{2+\beta_{1}}{h}}+e^{\frac{1+\beta_{2}}{h}} \leqslant 0 . \quad \text { Equivalently, } \quad\left|\beta_{1}-\beta_{2}\right| \leqslant 1
$$

Whenever this condition is satisfied, the solution is given by

$$
\binom{\xi_{1}}{\xi_{2}}=\lim _{h \searrow 0}\binom{h \log \left(e^{\frac{4+\beta_{2}}{h}}-e^{\frac{3+\beta_{1}}{h}}\right)-h \log \left(e^{6 / h}-e^{4 / h}\right)}{h \log \left(e^{\frac{2+\beta_{1}}{h}}-e^{\frac{1+\beta_{2}}{h}}\right)-h \log \left(e^{6 / h}-e^{4 / h}\right)}
$$

Another example

Consider

$$
\Pi=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \quad \Longrightarrow \quad P=\left(\begin{array}{cc}
e^{1 / h} & e^{2 / h} \\
e^{4 / h} & e^{3 / h}
\end{array}\right), \quad P^{-1}=\frac{1}{e^{4 / h}-e^{6 / h}}\left(\begin{array}{cc}
e^{3 / h} & -e^{2 / h} \\
-e^{4 / h} & e^{1 / h}
\end{array}\right)
$$

Since $\operatorname{det} P^{h}=e^{4 / h}-e^{6 / h}<0$, the condition (2) over β becomes

$$
e^{\frac{3+\beta_{1}}{h}}-e^{\frac{4+\beta_{2}}{h}} \leqslant 0, \quad \text { and } \quad-e^{\frac{2+\beta_{1}}{h}}+e^{\frac{1+\beta_{2}}{h}} \leqslant 0 . \quad \text { Equivalently, } \quad\left|\beta_{1}-\beta_{2}\right| \leqslant 1
$$

Whenever this condition is satisfied, the solution is given by

$$
\binom{\xi_{1}}{\xi_{2}}=\lim _{h \searrow 0}\binom{h \log \left(e^{\frac{4+\beta_{2}}{h}}-e^{\frac{3+\beta_{1}}{h}}\right)-h \log \left(e^{6 / h}-e^{4 / h}\right)}{h \log \left(e^{\frac{2+\beta_{1}}{h}}-e^{\frac{1+\beta_{2}}{h}}\right)-h \log \left(e^{6 / h}-e^{4 / h}\right)}=\binom{4+\beta_{2}-6}{2+\beta_{1}-6}
$$

Another example

Consider

$$
\Pi=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \quad \Longrightarrow \quad P=\left(\begin{array}{cc}
e^{1 / h} & e^{2 / h} \\
e^{4 / h} & e^{3 / h}
\end{array}\right), \quad P^{-1}=\frac{1}{e^{4 / h}-e^{6 / h}}\left(\begin{array}{cc}
e^{3 / h} & -e^{2 / h} \\
-e^{4 / h} & e^{1 / h}
\end{array}\right)
$$

Since $\operatorname{det} P^{h}=e^{4 / h}-e^{6 / h}<0$, the condition (2) over β becomes

$$
e^{\frac{3+\beta_{1}}{h}}-e^{\frac{4+\beta_{2}}{h}} \leqslant 0, \quad \text { and } \quad-e^{\frac{2+\beta_{1}}{h}}+e^{\frac{1+\beta_{2}}{h}} \leqslant 0 . \quad \text { Equivalently, } \quad\left|\beta_{1}-\beta_{2}\right| \leqslant 1
$$

Whenever this condition is satisfied, the solution is given by

$$
\binom{\xi_{1}}{\xi_{2}}=\lim _{h \searrow 0}\binom{h \log \left(e^{\frac{4+\beta_{2}}{h}}-e^{\frac{3+\beta_{1}}{h}}\right)-h \log \left(e^{6 / h}-e^{4 / h}\right)}{h \log \left(e^{\frac{2+\beta_{1}}{h}}-e^{\frac{1+\beta_{2}}{h}}\right)-h \log \left(e^{6 / h}-e^{4 / h}\right)}=\binom{4+\beta_{2}-6}{2+\beta_{1}-6}=\binom{\beta_{2}-2}{\beta_{1}-4} .
$$

To go further

Of course, the bulky reasoning may be refined.

To go further

Of course, the bulky reasoning may be refined.

- Algorithms to solve linear problems may be transposed in the (max, +) semialgebra (for instance, Euler scheme \Rightarrow the semi-lagrangian).

To go further

Of course, the bulky reasoning may be refined.

- Algorithms to solve linear problems may be transposed in the (max, +) semialgebra (for instance, Euler scheme \Rightarrow the semi-lagrangian). Even tropical finite elements [McE06]!

To go further

Of course, the bulky reasoning may be refined.

- Algorithms to solve linear problems may be transposed in the (max, +) semialgebra (for instance, Euler scheme \Rightarrow the semi-lagrangian). Even tropical finite elements [McE06]!

$\left(\oplus_{h}, \otimes_{h}\right)$
Intermediate operations

(max, +)
Idempotent operations

To go further

Of course, the bulky reasoning may be refined.

- Algorithms to solve linear problems may be transposed in the (max, +) semialgebra (for instance, Euler scheme \Rightarrow the semi-lagrangian). Even tropical finite elements [McE06]!

$(+, \cdot)$
Classical
operations
Linear
systems

$\left(\oplus_{h}, \otimes_{h}\right)$
Intermediate
operations
Intermediate
values

Table of Contents

The (max, +) semialgebra

Link with linear algebra

An application: finite-dimensional (max, +) system

The heat equation

What about transforming equations?

FIRST ORDER Consider the first-order transport equation

$$
\partial_{t} u(t, x)-\langle\nabla u(t, x), b(t, x)\rangle=0 .
$$

What about transforming equations?

FIRST ORDER Consider the first-order transport equation

$$
\partial_{t} u(t, x)-\langle\nabla u(t, x), b(t, x)\rangle=0
$$

Assume that $u \geqslant 0$, and define

$$
v(t, x)=h \log (u(t, x)), \quad \text { i.e. } \quad u(t, x)=\exp (u(t, x) / h)
$$

What about transforming equations?

FIRST ORDER Consider the first-order transport equation

$$
\partial_{t} u(t, x)-\langle\nabla u(t, x), b(t, x)\rangle=0
$$

Assume that $u \geqslant 0$, and define

$$
v(t, x)=h \log (u(t, x)), \quad \text { i.e. } \quad u(t, x)=\exp (u(t, x) / h)
$$

Then

$$
\begin{equation*}
\partial_{t} u=\frac{\exp (v / h)}{h} \partial_{t} v, \quad \nabla u=\frac{\exp (v / h)}{h} \nabla v \tag{3}
\end{equation*}
$$

What about transforming equations?

FIRST ORDER Consider the first-order transport equation

$$
\partial_{t} u(t, x)-\langle\nabla u(t, x), b(t, x)\rangle=0 .
$$

Assume that $u \geqslant 0$, and define

$$
v(t, x)=h \log (u(t, x)), \quad \text { i.e. } \quad u(t, x)=\exp (u(t, x) / h)
$$

Then

$$
\begin{equation*}
\partial_{t} u=\frac{\exp (v / h)}{h} \partial_{t} v, \quad \nabla u=\frac{\exp (v / h)}{h} \nabla v \tag{3}
\end{equation*}
$$

so that after dividing by $\frac{\exp (v / h)}{h}>0$, we get again $\partial_{t} v(t, x)-\langle\nabla v(t, x), b(t, x)\rangle=0$.

More transformations

SECOND ORDER Consider now the heat equation

$$
\partial_{t} u(t, x)-h \Delta u(t, x)=0
$$

More transformations

SECOND ORDER Consider now the heat equation

$$
\partial_{t} u(t, x)-h \Delta u(t, x)=0
$$

Let again $v=h \log (u)$, i.e. $u=\exp (v / h)$. Then in addition to (3), there holds

$$
\Delta u=\frac{\exp (v / t)}{h} \Delta v+\frac{\exp (v / t)}{h^{2}}|\nabla v|^{2}
$$

More transformations

SECOND ORDER Consider now the heat equation

$$
\partial_{t} u(t, x)-h \Delta u(t, x)=0
$$

Let again $v=h \log (u)$, i.e. $u=\exp (v / h)$. Then in addition to (3), there holds

$$
\Delta u=\frac{\exp (v / t)}{h} \Delta v+\frac{\exp (v / t)}{h^{2}}|\nabla v|^{2}
$$

Hence

$$
\frac{\exp (v / h)}{h} \partial_{t} v-h\left(\frac{\exp (v / t)}{h} \Delta v+\frac{\exp (v / t)}{h^{2}}|\nabla v|^{2}\right)=0
$$

More transformations

SECOND ORDER Consider now the heat equation

$$
\partial_{t} u(t, x)-h \Delta u(t, x)=0
$$

Let again $v=h \log (u)$, i.e. $u=\exp (v / h)$. Then in addition to (3), there holds

$$
\Delta u=\frac{\exp (v / t)}{h} \Delta v+\frac{\exp (v / t)}{h^{2}}|\nabla v|^{2}
$$

Hence

$$
\frac{\exp (v / h)}{h} \partial_{t} v-h\left(\frac{\exp (v / t)}{h} \Delta v+\frac{\exp (v / t)}{h^{2}}|\nabla v|^{2}\right)=0
$$

or after simplification,

$$
\partial_{t} v(t, x)-h \Delta v(t, x)-|\nabla v(t, x)|^{2}=0 .
$$

A link with viscosity solutions

Def 4 - (Historical intuition, see [CL83]) The vanishing viscosity solution of

$$
\partial_{t} v-|\nabla v|^{2}=0
$$

is the limit when h goes to 0 of the (unique) solution of the equation

$$
\partial_{t} v-h \Delta v-|\nabla v|^{2}=0
$$

A link with viscosity solutions

Def 4 - (Historical intuition, see [CL83]) The vanishing viscosity solution of

$$
\partial_{t} v-|\nabla v|^{2}=0
$$

is the limit when h goes to 0 of the (unique) solution of the equation

$$
\partial_{t} v-h \Delta v-|\nabla v|^{2}=0
$$

It may be characterized by two sign inequalities that maintain the validity of the comparison principle coming from the elliptic perturbation.

The heat kernel

Def 5 - Heat kernel Let C_{d} be a normalizing constant, and for any $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{d}$, define

$$
\mu_{t, x}^{h}:=\frac{1}{\sqrt{S_{d} t h}} \exp \left(-\frac{|\cdot-x|^{2}}{2 t h}\right) \mathcal{L}_{\mathbb{R}^{d}} \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)
$$

The heat kernel

Def 5 - Heat kernel Let C_{d} be a normalizing constant, and for any $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{d}$, define

$$
\mu_{t, x}^{h}:=\frac{1}{\sqrt{S_{d} t h}} \exp \left(-\frac{|\cdot-x|^{2}}{2 t h}\right) \mathcal{L}_{\mathbb{R}^{d}} \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)
$$

In particular, $\mu_{t, x}^{h} \underset{t \searrow 0}{\longrightarrow} \delta_{x}$ narrowly and in the Wasserstein topology.

The heat kernel

Def 5 - Heat kernel Let C_{d} be a normalizing constant, and for any $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{d}$, define

$$
\mu_{t, x}^{h}:=\frac{1}{\sqrt{S_{d} t h}} \exp \left(-\frac{|\cdot-x|^{2}}{2 t h}\right) \mathcal{L}_{\mathbb{R}^{d}} \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)
$$

In particular, $\mu_{t, x}^{h} \underset{t \searrow 0}{\longrightarrow} \delta_{x}$ narrowly and in the Wasserstein topology.
Proposition - Kernel representation The (weak) solution of the heat equation $\partial_{t} u(t, x)-h \Delta u(t, x)=0$ with initial value u_{0} is given by

$$
u(t, x)=\int_{y \in \mathbb{R}^{d}} u_{0}(y) d \mu_{t, x}^{h}(y)
$$

Going through the transformation

Let $u_{0}>0$ upper bounded and continuous.

Going through the transformation

Let $u_{0}>0$ upper bounded and continuous. Denoting again $v=h \log (u)$, and $v_{0}=h \log \left(u_{0}\right)$,

$$
v(t, x)=h \log \left(\int_{y \in \mathbb{R}^{d}} \exp \left(\frac{v_{0}(y)}{h}\right) d \mu_{t, x}^{h}(y)\right)
$$

Going through the transformation

Let $u_{0}>0$ upper bounded and continuous. Denoting again $v=h \log (u)$, and $v_{0}=h \log \left(u_{0}\right)$,

$$
\begin{aligned}
v(t, x) & =h \log \left(\int_{y \in \mathbb{R}^{d}} \exp \left(\frac{v_{0}(y)}{h}\right) d \mu_{t, x}^{h}(y)\right) \\
& =h \log \left(\frac{1}{\sqrt{C_{d} t h}} \int_{y \in \mathbb{R}^{d}} \exp \left(\frac{v_{0}(y)}{h}\right) \exp \left(-\frac{|y-x|^{2}}{2 t h}\right) d y\right)
\end{aligned}
$$

Going through the transformation

Let $u_{0}>0$ upper bounded and continuous. Denoting again $v=h \log (u)$, and $v_{0}=h \log \left(u_{0}\right)$,

$$
\begin{aligned}
v(t, x) & =h \log \left(\int_{y \in \mathbb{R}^{d}} \exp \left(\frac{v_{0}(y)}{h}\right) d \mu_{t, x}^{h}(y)\right) \\
& =h \log \left(\frac{1}{\sqrt{C_{d} t h}} \int_{y \in \mathbb{R}^{d}} \exp \left(\frac{v_{0}(y)}{h}\right) \exp \left(-\frac{|y-x|^{2}}{2 t h}\right) d y\right) \\
& =-\frac{h}{2} \log \left(C_{d} t h\right)+h \log \left(\int_{y \in \mathbb{R}^{d}} \exp \left(\frac{1}{h}\left[v_{0}(y)-\frac{|y-x|^{2}}{2 t}\right]\right) d y\right)
\end{aligned}
$$

Going through the transformation

Let $u_{0}>0$ upper bounded and continuous. Denoting again $v=h \log (u)$, and $v_{0}=h \log \left(u_{0}\right)$,

$$
\begin{aligned}
v(t, x) & =h \log \left(\int_{y \in \mathbb{R}^{d}} \exp \left(\frac{v_{0}(y)}{h}\right) d \mu_{t, x}^{h}(y)\right) \\
& =h \log \left(\frac{1}{\sqrt{C_{d} t h}} \int_{y \in \mathbb{R}^{d}} \exp \left(\frac{v_{0}(y)}{h}\right) \exp \left(-\frac{|y-x|^{2}}{2 t h}\right) d y\right) \\
& =-\frac{h}{2} \log \left(C_{d} t h\right)+h \log \left(\int_{y \in \mathbb{R}^{d}} \exp \left(\frac{1}{h}\left[v_{0}(y)-\frac{|y-x|^{2}}{2 t}\right]\right) d y\right) \\
& \xrightarrow[h \searrow 0]{ } 0+\sup _{y \in \mathbb{R}^{d}}\left[v_{0}(y)-\frac{|y-x|^{2}}{2 t}\right]
\end{aligned}
$$

Control interpretation

Let

$$
\hat{m}_{t, x}:=-\frac{|\cdot-x|^{2}}{2 t}, \quad \hat{\mu}_{t, x}(B):=\sup _{y \in B} \hat{m}_{t, x}(y) \quad \forall B \subset \mathbb{R}^{d} .
$$

Control interpretation

Let

$$
\hat{m}_{t, x}:=-\frac{|\cdot-x|^{2}}{2 t}, \quad \hat{\mu}_{t, x}(B):=\sup _{y \in B} \hat{m}_{t, x}(y) \quad \forall B \subset \mathbb{R}^{d} .
$$

In the vocabulary of [DMD99], $\hat{m}_{t, x}$ is the density of the Maslov measure $\hat{\mu}_{t, x}$.

Control interpretation

Let

$$
\hat{m}_{t, x}:=-\frac{|\cdot-x|^{2}}{2 t}, \quad \hat{\mu}_{t, x}(B):=\sup _{y \in B} \hat{m}_{t, x}(y) \quad \forall B \subset \mathbb{R}^{d} .
$$

In the vocabulary of [DMD99], $\hat{m}_{t, x}$ is the density of the Maslov measure $\hat{\mu}_{t, x}$.
Proposition - Value function [Lio82] The function

$$
\begin{equation*}
V(t, x):=\int_{y \in \mathbb{R}^{d}}^{\oplus} v_{0} \otimes \hat{\mu}_{t, x}=\sup _{y \in \mathbb{R}^{d}}\left[v_{0}(y)-\frac{|y-x|^{2}}{2 t}\right] \tag{4}
\end{equation*}
$$

is the unique viscosity solution of the Hamilton-Jacobi equation $\partial_{t} V-|\nabla V|^{2}=0$ such that $V(0, \cdot)=v_{0}$.

Control interpretation

Let

$$
\hat{m}_{t, x}:=-\frac{|\cdot-x|^{2}}{2 t}, \quad \hat{\mu}_{t, x}(B):=\sup _{y \in B} \hat{m}_{t, x}(y) \quad \forall B \subset \mathbb{R}^{d} .
$$

In the vocabulary of [DMD99], $\hat{m}_{t, x}$ is the density of the Maslov measure $\hat{\mu}_{t, x}$.
Proposition - Value function [Lio82] The function

$$
\begin{equation*}
V(t, x):=\int_{y \in \mathbb{R}^{d}}^{\oplus} v_{0} \otimes \hat{\mu}_{t, x}=\sup _{y \in \mathbb{R}^{d}}\left[v_{0}(y)-\frac{|y-x|^{2}}{2 t}\right] \tag{4}
\end{equation*}
$$

is the unique viscosity solution of the Hamilton-Jacobi equation $\partial_{t} V-|\nabla V|^{2}=0$ such that $V(0, \cdot)=v_{0}$. The formula (4) is known as the Hopf-Lax formula.

Going further

- In the case of the heat equation, Hopf-Cole transform. But Lax-Hopf formula valid for a larger class of HJ equations of the type

$$
\partial_{t} V(t, x)+H(x, \nabla V(t, x))=0
$$

provided the Hamiltonian H is concave in its second variable (+ regularity conditions).

Going further

- In the case of the heat equation, Hopf-Cole transform. But Lax-Hopf formula valid for a larger class of HJ equations of the type

$$
\partial_{t} V(t, x)+H(x, \nabla V(t, x))=0
$$

provided the Hamiltonian H is concave in its second variable (+ regularity conditions).

- Maslov measures may be used to recast the Lax-Hopf semigroup as the conditional expectation of Maslov stochastic processes.

Going further

- In the case of the heat equation, Hopf-Cole transform. But Lax-Hopf formula valid for a larger class of HJ equations of the type

$$
\partial_{t} V(t, x)+H(x, \nabla V(t, x))=0
$$

provided the Hamiltonian H is concave in its second variable (+ regularity conditions).

- Maslov measures may be used to recast the Lax-Hopf semigroup as the conditional expectation of Maslov stochastic processes.
- Using the Hopf-Lax semigroup, Maslov defined weak solution by "duality", in the spirit of

$$
\langle u, \varphi\rangle_{\oplus}=\left\langle u_{0}, S_{t}^{*} \varphi\right\rangle_{\oplus},
$$

where S_{t}^{*} is a "dual" semigroup acting on test functions φ [KM97, Definition 3.1].

Conclusion

$\left(\oplus_{h}, \otimes_{h}\right)$
Intermediate operations Intermediate values Viscous Eikonal equation$\quad h \rightarrow 0$

(max, +)
Idempotent operations
(max, +)
systems
Eikonal equation

Thank you!

[Aki07] Marianne Akian.
Algèbre Max-plus, Applications Monotones Contractantes et Équations Aux Dérivées Partielles: Trois Approches Du Contrôle Optimal.
Habilitation à diriger les recherches, 2007.
[Ang15] Jesus Angulo.
Morphological Scale-Space Operators for Images Supported on Point Clouds.
In Springer-Verlag Berlin Heidelberg, editor, 5th International Conference on Scale Space and Variational Methods in Computer Vision, volume LNCS 9087 of Proc. of SSVM'15 (5th International Conference on Scale Space and Variational Methods in Computer Vision), Lège-Cap Ferret, France, June 2015.
[Ang22] Jesús Angulo.
Morphological Counterpart of Ornstein-Uhlenbeck Semigroups and PDEs.
In Étienne Baudrier, Benoît Naegel, Adrien Krähenbühl, and Mohamed Tajine, editors, Discrete Geometry and Mathematical Morphology, Lecture Notes in Computer Science, pages 169-181, Cham, 2022. Springer International Publishing.
[CL83] Michael G. Crandall and Pierre-Louis Lions. Viscosity solutions of Hamilton-Jacobi equations.
Transactions of the American Mathematical Society, 277(1):1-42, 1983.
[DMD99] P. Del Moral and M. Doisy.
Maslov Idempotent Probability Calculus, I.
Theory of Probability \& Its Applications, 43(4):562-576, January 1999.
[KM97] Vassili N. Kolokoltsov and Victor P. Maslov. Idempotent Analysis and Its Applications.
Springer Netherlands, Dordrecht, 1997.
[Lio82] P. L. Lions.
Generalized Solutions of Hamilton-Jacobi Equations.
Number 69 in Research Notes in Mathematics. Pitman, Boston, 1982.
[Lit12] Grigory L. Litvinov.
Idempotent/tropical analysis, the Hamilton-Jacobi and Bellman equations, March 2012.
[McE06] William M. McEneaney.
Max-plus Methods for Nonlinear Control and Estimation.
Systems and Control. Birkhäuser, Boston, 2006.

