# Tropical heat The eikonal equation as a (max,+) version of the Poisson equation

Averil Prost

January 30, 2024 LMI-LMRS Doctoral seminar



Finite-dim systems

#### Table of Contents

The (max,+) semialgebra

Link with linear algebra

An application: finite-dimensional (max, +) system

The heat equation

Finite-dim systems

# The (max,+) idempotent calculus

Let  $\Omega \coloneqq \mathbb{R} \cup \{-\infty\}$ .

**Def 1 – Operations** For  $a, b \in \Omega$ , define

 $a \oplus b \coloneqq \max(a, b), \qquad a \otimes b \coloneqq a + b.$ 

Let  $\Omega \coloneqq \mathbb{R} \cup \{-\infty\}$ .

**Def 1** – **Operations** For  $a, b \in \Omega$ , define

 $a \oplus b \coloneqq \max(a, b), \qquad a \otimes b \coloneqq a + b.$ 

Both operations are commutative and associative, and

 $a\otimes (b\oplus c)$ 

Let  $\Omega \coloneqq \mathbb{R} \cup \{-\infty\}$ .

**Def 1** – **Operations** For  $a, b \in \Omega$ , define

 $a \oplus b \coloneqq \max(a, b), \qquad a \otimes b \coloneqq a + b.$ 

Both operations are commutative and associative, and

 $a \otimes (b \oplus c) = a + \max(b, c)$ 

Let  $\Omega \coloneqq \mathbb{R} \cup \{-\infty\}$ .

**Def 1** – **Operations** For  $a, b \in \Omega$ , define

 $a \oplus b \coloneqq \max(a, b), \qquad a \otimes b \coloneqq a + b.$ 

Both operations are commutative and associative, and

$$a \otimes (b \oplus c) = a + \max(b, c) = \max(a + b, a + c)$$

Finite-dim systems

# The (max,+) idempotent calculus

Let  $\Omega \coloneqq \mathbb{R} \cup \{-\infty\}$ .

**Def 1 – Operations** For  $a, b \in \Omega$ , define

 $a \oplus b \coloneqq \max(a, b), \qquad a \otimes b \coloneqq a + b.$ 

Both operations are commutative and associative, and

$$a \otimes (b \oplus c) = a + \max(b, c) = \max(a + b, a + c) = (a \otimes b) \oplus (a \otimes c).$$

"Idempotent" since  $a \oplus a = a$ .

Let  $\Omega \coloneqq \mathbb{R} \cup \{-\infty\}$ .

**Def 1 – Operations** For  $a, b \in \Omega$ , define

 $a \oplus b \coloneqq \max(a, b), \qquad a \otimes b \coloneqq a + b.$ 

Both operations are commutative and associative, and

$$a \otimes (b \oplus c) = a + \max(b, c) = \max(a + b, a + c) = (a \otimes b) \oplus (a \otimes c).$$

"Idempotent" since  $a \oplus a = a$ . Define  $\mathbb{O} := -\infty$  and  $\mathbb{I} := 0$ . Then

$$0 \oplus a = \max\left(-\infty, a\right) = a,$$

Finite-dim systems

# The (max,+) idempotent calculus

Let  $\Omega \coloneqq \mathbb{R} \cup \{-\infty\}$ .

**Def 1 – Operations** For  $a, b \in \Omega$ , define

 $a \oplus b \coloneqq \max(a, b), \qquad a \otimes b \coloneqq a + b.$ 

Both operations are commutative and associative, and

$$a \otimes (b \oplus c) = a + \max(b, c) = \max(a + b, a + c) = (a \otimes b) \oplus (a \otimes c).$$

"Idempotent" since  $a \oplus a = a$ . Define  $\mathbb{O} := -\infty$  and  $\mathbb{I} := 0$ . Then

 $\mathbb{O} \oplus a = \max(-\infty, a) = a, \qquad \mathbb{O} \otimes a = -\infty + a = \mathbb{O},$ 

Finite-dim systems

# The (max,+) idempotent calculus

Let  $\Omega \coloneqq \mathbb{R} \cup \{-\infty\}$ .

**Def 1 – Operations** For  $a, b \in \Omega$ , define

 $a \oplus b \coloneqq \max(a, b), \qquad a \otimes b \coloneqq a + b.$ 

Both operations are commutative and associative, and

$$a \otimes (b \oplus c) = a + \max(b, c) = \max(a + b, a + c) = (a \otimes b) \oplus (a \otimes c).$$

"Idempotent" since  $a \oplus a = a$ . Define  $\mathbb{O} := -\infty$  and  $\mathbb{I} := 0$ . Then

 $\mathbb{O} \oplus a = \max\left(-\infty, a\right) = a, \qquad \mathbb{O} \otimes a = -\infty + a = \mathbb{O}, \qquad \mathbb{I} \otimes a = a + 0 = a.$ 

Let  $\Omega \coloneqq \mathbb{R} \cup \{-\infty\}$ .

**Def 1 – Operations** For  $a, b \in \Omega$ , define

 $a \oplus b \coloneqq \max(a, b), \qquad a \otimes b \coloneqq a + b.$ 

Both operations are commutative and associative, and

$$a \otimes (b \oplus c) = a + \max(b, c) = \max(a + b, a + c) = (a \otimes b) \oplus (a \otimes c).$$

"Idempotent" since  $a \oplus a = a$ . Define  $\mathbb{O} := -\infty$  and  $\mathbb{I} := 0$ . Then

$$\mathbb{0} \oplus a = \max\left(-\infty, a\right) = a, \qquad \mathbb{0} \otimes a = -\infty + a = \mathbb{0}, \qquad \mathbb{1} \otimes a = a + 0 = a.$$

Then  $(\Omega, \oplus, \otimes, \mathbb{0}, \mathbb{1})$  is a semiring (ring without additive inverse).

| Averil Prost |  |
|--------------|--|
|--------------|--|

| The (max,+) semialgebra<br>००●० | Link with linear algebra | Finite-dim systems<br>000000 | The heat equation |
|---------------------------------|--------------------------|------------------------------|-------------------|
| Integrals                       |                          |                              |                   |

Endow  $\Omega$  with the application  $d(a,b) \coloneqq |e^a - e^b|$ , and let  $f: \Omega \to \Omega$  be continuous. Then

$$\sum_{i\in\mathbb{Z}\cup\{-\infty\}}^{\oplus} f(hi) = \max_{i\in\mathbb{Z}\cup\{-\infty\}} f(hi) \xrightarrow[h\searrow 0]{} \sup_{x\in\Omega=\mathbb{R}\cup\{-\infty\}} f(x).$$

| The (max,+) semialgebra<br>००●੦ | Link with linear algebra | Finite-dim systems | The heat equation |
|---------------------------------|--------------------------|--------------------|-------------------|
| Integrals                       |                          |                    |                   |

Endow  $\Omega$  with the application  $d(a,b) \coloneqq |e^a - e^b|$ , and let  $f: \Omega \to \Omega$  be continuous. Then

$$\sum_{i\in\mathbb{Z}\cup\{-\infty\}}^{\oplus} f(hi) = \max_{i\in\mathbb{Z}\cup\{-\infty\}} f(hi) \xrightarrow{}_{h\searrow 0} \sup_{x\in\Omega=\mathbb{R}\cup\{-\infty\}} f(x).$$

**Def 2 – Integral** Define  $\int_{x\in\Omega}^\oplus f(x)\coloneqq \sup_{x\in\Omega} f(x).$ 

| The (max,+) semialgebra<br>○0●○ | Link with linear algebra | Finite-dim systems | The heat equation |
|---------------------------------|--------------------------|--------------------|-------------------|
| Integrals                       |                          |                    |                   |

Endow  $\Omega$  with the application  $d(a,b) \coloneqq |e^a - e^b|$ , and let  $f: \Omega \to \Omega$  be continuous. Then

$$\sum_{i\in\mathbb{Z}\cup\{-\infty\}}^{\oplus} f(hi) = \max_{i\in\mathbb{Z}\cup\{-\infty\}} f(hi) \xrightarrow{}{}_{h\searrow 0} \sup_{x\in\Omega=\mathbb{R}\cup\{-\infty\}} f(x).$$

**Def 2 – Integral** Define 
$$\int_{x\in\Omega}^\oplus f(x)\coloneqq \sup_{x\in\Omega} f(x).$$

In particular, the scalar product becomes

$$\langle f,g \rangle_{\oplus} = \int_{x \in \Omega}^{\oplus} f(x) \otimes g(x) = \sup_{x \in \Omega} f(x) + g(x).$$

Finite-dim systems

#### People and motivation

 $\bullet$  Several names: tropical analysis, idempotent or  $(\max,+)$  algebra.

- $\bullet$  Several names: tropical analysis, idempotent or  $(\max,+)$  algebra.
- 1997: book from Kolokolstov and Maslov [KM97]

- $\bullet$  Several names: tropical analysis, idempotent or  $(\max,+)$  algebra.
- 1997: book from Kolokolstov and Maslov [KM97]
- 2006: numerical book from McEneaney [McE06]

- $\bullet$  Several names: tropical analysis, idempotent or  $(\max,+)$  algebra.
- 1997: book from Kolokolstov and Maslov [KM97]
- 2006: numerical book from McEneaney [McE06]
- In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)

- $\bullet$  Several names: tropical analysis, idempotent or  $(\max,+)$  algebra.
- 1997: book from Kolokolstov and Maslov [KM97]
- 2006: numerical book from McEneaney [McE06]
- In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)
- Currently a topic in image processing (morphological operations, [Ang15, Ang22]) and physics ([de]quantization, [Lit12]).

- $\bullet$  Several names: tropical analysis, idempotent or  $(\max,+)$  algebra.
- 1997: book from Kolokolstov and Maslov [KM97]
- 2006: numerical book from McEneaney [McE06]
- In France: Marianne Akian and Stéphane Gaubert ([Aki07], numerical talk)
- Currently a topic in image processing (morphological operations, [Ang15, Ang22]) and physics ([de]quantization, [Lit12]).

**Motivation** Ease the study of **optimization problems** by directly working with the "natural" operations of (here) **maximization and sum** of gains.

Finite-dim systems

The heat equation

#### Table of Contents

The (max,+) semialgebra

#### Link with linear algebra

An application: finite-dimensional (max, +) system

The heat equation

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | o●oooo                   | 000000             |                   |
|                         |                          |                    |                   |

# An elementary result

**Proposition** –   
 Let 
$$f > g$$
. Then  

$$\lim_{h \searrow 0} h \log \left( e^{f/h} + e^{g/h} \right) = \lim_{h \searrow 0} h \log \left( e^{f/h} - e^{g/h} \right) = f.$$

| The (max,+) semialgebra<br>0000 | Link with linear algebra<br>o●oooo | Finite-dim systems | The heat equation |
|---------------------------------|------------------------------------|--------------------|-------------------|
|                                 |                                    |                    |                   |

### An elementary result

**Proposition** – 
$$\checkmark$$
 Let  $f > g$ . Then  
$$\lim_{h \searrow 0} h \log \left( e^{f/h} + e^{g/h} \right) = \lim_{h \searrow 0} h \log \left( e^{f/h} - e^{g/h} \right) = f.$$

Readily visible by noticing that

$$e^{f/h} \pm e^{g/h} = e^{f/h} \left( 1 \pm e^{(g-f)/h} \right).$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | o●oooo                   | 000000             |                   |
|                         |                          |                    |                   |

#### An elementary result

**Proposition** – 
$$\checkmark$$
 Let  $f > g$ . Then  
$$\lim_{h \searrow 0} h \log \left( e^{f/h} + e^{g/h} \right) = \lim_{h \searrow 0} h \log \left( e^{f/h} - e^{g/h} \right) = f.$$

Readily visible by noticing that

$$e^{f/h} \pm e^{g/h} = e^{f/h} \left( 1 \pm e^{(g-f)/h} \right).$$

Going further, for any upper bounded and continuous f, there holds

$$\lim_{h\searrow 0} h\log\left(\int_{x\in \mathbb{R}^d} \exp\left(\frac{f(x)}{h}\right) dx\right) = \sup_{x\in \mathbb{R}^d} f(x).$$

| The ( | (max,+) | semialgebra |
|-------|---------|-------------|
|       |         |             |

Finite-dim systems

The heat equation

# Logarithm transform

**Def 3** – **Logarithm trick** For h > 0, consider the operations

$$a \otimes_h b \coloneqq h \log \left( e^{a/h} \cdot e^{b/h} \right), \qquad a \oplus_h b \coloneqq h \log(e^{a/h} + e^{b/h}).$$

|  | The (max,+) semialgebra | Link with linear algebra<br>००●००० | Finite-dim systems<br>000000 |  |
|--|-------------------------|------------------------------------|------------------------------|--|
|--|-------------------------|------------------------------------|------------------------------|--|

The heat equation

# Logarithm transform

**Def 3** – Logarithm trick For h > 0, consider the operations

$$a \otimes_h b \coloneqq h \log \left( e^{a/h} \cdot e^{b/h} \right), \qquad a \oplus_h b \coloneqq h \log(e^{a/h} + e^{b/h}).$$

Then

$$a \otimes_h b = a + b, \qquad a \oplus_h b \xrightarrow[h \searrow 0]{} \max(a, b).$$

| The (max,+) semialgebra | Link with linear algebra<br>00●000 | Finite-dim systems<br>000000 | The heat equatic |
|-------------------------|------------------------------------|------------------------------|------------------|
|                         |                                    |                              |                  |

# Logarithm transform

**Def 3** – **Logarithm trick** For h > 0, consider the operations

$$a \otimes_h b \coloneqq h \log \left( e^{a/h} \cdot e^{b/h} \right), \qquad a \oplus_h b \coloneqq h \log(e^{a/h} + e^{b/h}).$$

Then

$$a \otimes_h b = a + b, \qquad a \oplus_h b \xrightarrow[h > 0]{} \max(a, b).$$

We could go further with this game, for instance with

$$a^{\oplus}b \coloneqq \lim_{h \searrow 0} h \log \left( \exp(a/h) \circ \exp(b/h) \right)$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | <b>The he</b> |
|-------------------------|--------------------------|--------------------|---------------|
| 0000                    | ००●०००                   | 000000             | 00000-        |
|                         |                          |                    |               |

# Logarithm transform

**Def 3** – **Logarithm trick** For h > 0, consider the operations

$$a \otimes_h b \coloneqq h \log \left( e^{a/h} \cdot e^{b/h} \right), \qquad a \oplus_h b \coloneqq h \log(e^{a/h} + e^{b/h}).$$

Then

$$a \otimes_h b = a + b, \qquad a \oplus_h b \xrightarrow[h > 0]{} \max(a, b).$$

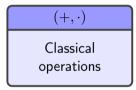
We could go further with this game, for instance with

$$a^{\oplus}b \coloneqq \lim_{h \searrow 0} h \log \left( \exp(a/h) \circ \exp(b/h) \right) = \begin{cases} a & b = 0\\ \mathbb{I} = 0 & b < 0\\ +\infty & b > 0. \end{cases}$$

eat equation

Finite-dim systems

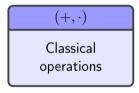
The heat equation



Finite-dim systems

The heat equation 000000000

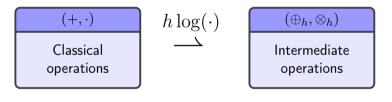
# Dialog between $(+,\cdot)$ and $(\max,+)$



 $(\oplus_h,\otimes_h)$ Intermediate operations

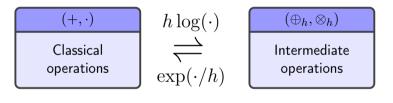
Finite-dim systems

The heat equation 000000000



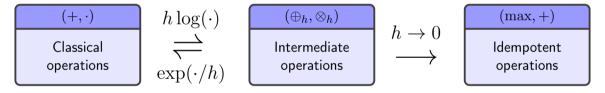
Finite-dim systems

The heat equation



Finite-dim systems

The heat equation



| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | ००००●०                   | 000000             |                   |
|                         |                          |                    |                   |

### Linearity

Let  $\mathrm{I}:\mathbb{R}^d \to \mathbb{R}^d$  be linear, and denote

 $\Phi_h(x) \coloneqq h \log \circ \mathbf{I} \circ \exp\left(x/h\right).$ 

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 0000●0                   | 000000             |                   |
| Linearity               |                          |                    |                   |

Let  $\mathrm{I}:\mathbb{R}^d\to\mathbb{R}^d$  be linear, and denote

```
\Phi_h(x) \coloneqq h \log \circ \mathbf{I} \circ \exp\left(x/h\right).
```

Here all the operations are understood coordinate by coordinate. Then

 $\Phi_h \left( a \oplus_h b 
ight)$ 

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 0000●0                   | 000000             |                   |
| Linearity               |                          |                    |                   |

Let  $I : \mathbb{R}^d \to \mathbb{R}^d$  be linear, and denote

```
\Phi_h(x) \coloneqq h \log \circ \mathbf{I} \circ \exp\left(x/h\right).
```

Here all the operations are understood coordinate by coordinate. Then

 $\Phi_h \left( a \oplus_h b \right) = h \log \circ \mathbf{I} \circ e^{\frac{a \oplus_h b}{h}}$ 

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 0000●0                   | 000000             |                   |
| Linearity               |                          |                    |                   |

Let  $I : \mathbb{R}^d \to \mathbb{R}^d$  be linear, and denote

 $\Phi_h(x) \coloneqq h \log \circ \mathbf{I} \circ \exp\left(x/h\right).$ 

$$\Phi_h \left( a \oplus_h b \right) = h \log \circ \mathbf{I} \circ e^{\frac{a \oplus_h b}{h}} = h \log \circ \mathbf{I} \left( e^{a/h} + e^{b/h} \right)$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | ००००●०                   | 000000             |                   |
|                         |                          |                    |                   |

Let  $\mathrm{I}:\mathbb{R}^d\to\mathbb{R}^d$  be linear, and denote

 $\Phi_h(x) \coloneqq h \log \circ \mathbf{I} \circ \exp\left(x/h\right).$ 

$$\Phi_h \left( a \oplus_h b \right) = h \log \circ \mathbf{I} \circ e^{\frac{a \oplus_h b}{h}} = h \log \circ \mathbf{I} \left( e^{a/h} + e^{b/h} \right) = h \log \left( \mathbf{I} e^{a/h} + \mathbf{I} e^{b/h} \right)$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | ००००●੦                   | 000000             |                   |
|                         |                          |                    |                   |

Let  $\mathrm{I}:\mathbb{R}^d\to\mathbb{R}^d$  be linear, and denote

$$\Phi_h(x) \coloneqq h \log \circ \mathbf{I} \circ \exp(x/h)$$
.

$$\Phi_h (a \oplus_h b) = h \log \circ \mathbf{I} \circ e^{\frac{a \oplus_h b}{h}} = h \log \circ \mathbf{I} \left( e^{a/h} + e^{b/h} \right) = h \log \left( \mathbf{I} e^{a/h} + \mathbf{I} e^{b/h} \right)$$
$$= h \log \left( e^{\frac{\Phi_h(a)}{h}} + e^{\frac{\Phi_h(b)}{h}} \right)$$

| The (max,+) semialgebra<br>0000 | Link with linear algebra<br>००००●੦ | Finite-dim systems | The heat equation |
|---------------------------------|------------------------------------|--------------------|-------------------|
|                                 |                                    |                    |                   |

Let  $\mathrm{I}:\mathbb{R}^d\to\mathbb{R}^d$  be linear, and denote

$$\Phi_h(x) \coloneqq h \log \circ \mathbf{I} \circ \exp(x/h)$$
.

$$\Phi_h (a \oplus_h b) = h \log \circ \mathbf{I} \circ e^{\frac{a \oplus_h b}{h}} = h \log \circ \mathbf{I} \left( e^{a/h} + e^{b/h} \right) = h \log \left( \mathbf{I} e^{a/h} + \mathbf{I} e^{b/h} \right)$$
$$= h \log \left( e^{\frac{\Phi_h(a)}{h}} + e^{\frac{\Phi_h(b)}{h}} \right) = \Phi_h(a) \oplus_h \Phi_h(b).$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | ००००●०                   | 000000             |                   |
|                         |                          |                    |                   |

Let  $\mathrm{I}:\mathbb{R}^d\to\mathbb{R}^d$  be linear, and denote

$$\Phi_h(x) \coloneqq h \log \circ \mathbf{I} \circ \exp\left(x/h\right).$$

Here all the operations are understood coordinate by coordinate. Then

$$\Phi_h (a \oplus_h b) = h \log \circ \mathbf{I} \circ e^{\frac{a \oplus_h b}{h}} = h \log \circ \mathbf{I} \left( e^{a/h} + e^{b/h} \right) = h \log \left( \mathbf{I} e^{a/h} + \mathbf{I} e^{b/h} \right)$$
$$= h \log \left( e^{\frac{\Phi_h(a)}{h}} + e^{\frac{\Phi_h(b)}{h}} \right) = \Phi_h(a) \oplus_h \Phi_h(b).$$

Similarly,

$$\Phi_h(a \otimes_h b) = a \otimes_h \Phi_h(b) = \Phi_h(a) \otimes_h b = a \otimes b \otimes \Phi_h(\mathbb{1}).$$

| The (max,+) semialgebra | Link with linear algebra<br>୦୦୦୦●୦ | Finite-dim systems<br>000000 | The heat equation |
|-------------------------|------------------------------------|------------------------------|-------------------|
|                         |                                    |                              |                   |

Let  $\mathrm{I}:\mathbb{R}^d\to\mathbb{R}^d$  be linear, and denote

$$\Phi_h(x) \coloneqq h \log \circ \mathbf{I} \circ \exp\left(x/h\right).$$

Here all the operations are understood coordinate by coordinate. Then

$$\Phi_h (a \oplus_h b) = h \log \circ \mathbf{I} \circ e^{\frac{a \oplus_h b}{h}} = h \log \circ \mathbf{I} \left( e^{a/h} + e^{b/h} \right) = h \log \left( \mathbf{I} e^{a/h} + \mathbf{I} e^{b/h} \right)$$
$$= h \log \left( e^{\frac{\Phi_h(a)}{h}} + e^{\frac{\Phi_h(b)}{h}} \right) = \Phi_h(a) \oplus_h \Phi_h(b).$$

Similarly,

$$\Phi_h(a \otimes_h b) = a \otimes_h \Phi_h(b) = \Phi_h(a) \otimes_h b = a \otimes b \otimes \Phi_h(\mathbb{1}).$$

The limit operator  $\Phi \coloneqq \lim_{h \searrow 0} \Phi_h$  is  $(\max, +)$ -linear.

| Averil F | Prost |
|----------|-------|
|----------|-------|

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | ०००००●                   | 000000             |                   |
| Example                 |                          |                    |                   |

Let 
$$d = 2$$
 and  $I(x) = Ax$ , where  $A \coloneqq \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$ . Then

 $\Phi_h(x) = h \log \circ \mathbf{I} \circ \exp\left(x/h\right)$ 

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 00000●                   | 000000             |                   |
| Example                 |                          |                    |                   |

Let 
$$d = 2$$
 and  $I(x) = Ax$ , where  $A \coloneqq \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$ . Then  
 $\Phi_h(x) = h \log \circ \mathbf{I} \circ \exp(x/h) = h \log \begin{pmatrix} \exp(x_1/h) + \exp(x_2/h) \\ 2\exp(x_1/h) \end{pmatrix}$ 

| The (max,+) semialgebra                                        | Link with linear algebra<br>00000●                                      | <b>Finite-dim systems</b><br>000000                                                                                                                                      | The heat equation                                                    |
|----------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Example                                                        |                                                                         |                                                                                                                                                                          |                                                                      |
| Let $d=2$ and $I(x)=Ax$ , w                                    | where $A \coloneqq \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$ . Then |                                                                                                                                                                          |                                                                      |
| $\Phi_h(x) = h \log \circ \mathbf{I} \circ \exp\left(x\right)$ | $(x/h) = h \log \left( \exp(x_1/h) + 2\exp(x_2/h) \right)$              | $\left( \begin{array}{c} \exp\left(x_2/h\right) \\ x_1/h \end{array} \right) \xrightarrow[h \searrow 0]{} \left( \begin{array}{c} x_1 \\ x_2 \\ x_1 \end{array} \right)$ | $\left. \begin{array}{c} \max(x_1, x_2) \\ x_1 \end{array} \right).$ |

| <b>The (max,+) semialgebra</b><br>0000                                         | Link with linear algebra<br>00000●                                 | Finite-dim systems<br>000000                                                                                                                   | The heat equation                                      |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Example                                                                        |                                                                    |                                                                                                                                                |                                                        |
| Let $d = 2$ and $I(x) = Ax$ , we have $A = 2$ and $I(x) = Ax$ and $A = 2$      | where $A\coloneqq egin{pmatrix} 1 & 1 \ 2 & 0 \end{pmatrix}$ . T   | hen                                                                                                                                            |                                                        |
| $\Phi_h(x) = h \log \circ \mathbf{I} \circ \exp\left(x\right)$                 | $(x/h) = h \log \left( \exp \left( \frac{x_1}{2e} \right) \right)$ | $(h) + \exp(x_2/h) \xrightarrow{h \searrow 0} \left( \exp(x_1/h) \right) \xrightarrow{h \searrow 0} \left( \left( \frac{h}{h} \right) \right)$ | $\begin{pmatrix} \max(x_1, x_2) \\ x_1 \end{pmatrix}.$ |
| Define $\Phi(x) \coloneqq \begin{pmatrix} \max(x_1, x_1) \\ x_1 \end{pmatrix}$ | $\left( \mathcal{S}_{2} ight)  ight) :$ then for any $\lambda \in$ | $\mathbb R$ , $(x_1,x_2)$ and $(y_1,y_2)$ ,                                                                                                    |                                                        |

| The (max,+) semialgebra<br>0000                                                                            | Link with linear algebra<br>00000●                                             | Finite-dim systems<br>000000                              | The heat equation                                                    |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|
| Example                                                                                                    |                                                                                |                                                           |                                                                      |
| Let $d = 2$ and $I(x) = Ax$ ,                                                                              | where $A \coloneqq \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$ .             | Then                                                      |                                                                      |
| $\Phi_h(x) = h \log \circ \mathbf{I} \circ \exp$                                                           | $(x/h) = h \log \left( \exp \left( x_1 - 2 \right) \right)$                    | $(h) + \exp(x_2/h)$ ${h \searrow 0} \left( x_1/h \right)$ | $\left. \begin{array}{c} \max(x_1, x_2) \\ x_1 \end{array} \right).$ |
| Define $\Phi(x) \coloneqq \begin{pmatrix} \max(x_1, x_2) \\ x_1 \end{pmatrix}$                             | $\left( x_{2} ight)  ight)$ : then for any $\lambda\in$                        | $\mathbb{R}$ , $(x_1,x_2)$ and $(y_1,y_2)$ ,              |                                                                      |
| $\Phi\left(\lambda\otimes x\oplus y\right)=\Phi\left(\begin{matrix}\max_{\max}\\\\\max\end{matrix}\right)$ | $egin{aligned} & (\lambda+x_1,y_1) \ & (\lambda+x_2,y_2) \end{aligned}  ight)$ |                                                           |                                                                      |

| The (max,+) semialgebra<br>0000                                                    | Link with linear algebra<br>00000●                                                                                             | Finite-dim systems<br>000000                                                                                       | The heat equation                                                    |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Example                                                                            |                                                                                                                                |                                                                                                                    |                                                                      |
| Let $d = 2$ and $I(x) = Ax$ ,                                                      | where $A \coloneqq \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$ .                                                             | Then                                                                                                               |                                                                      |
| $\Phi_h(x) = h \log \circ \mathbf{I} \circ \exp \left( -\frac{1}{2} \right)$       | $(x/h) = h \log \left( \exp \left( x_1 \right) \right)$                                                                        | $(h) + \exp(x_2/h) $ $\xrightarrow{h \searrow 0} $ $(1)$                                                           | $\left. \begin{array}{c} \max(x_1, x_2) \\ x_1 \end{array} \right).$ |
| Define $\Phi(x) \coloneqq \begin{pmatrix} \max(x_1, \\ x_1 \end{pmatrix}$          | $x_2) \Biggr)$ : then for any $\lambda \in$                                                                                    | $\mathbb{R}$ , $(x_1,x_2)$ and $(y_1,y_2)$ ,                                                                       |                                                                      |
| $\Phi\left(\lambda\otimes x\oplus y ight)=\Phi\left(egin{max}{max}(max)\max ight)$ | $\begin{pmatrix} \lambda + x_1, y_1 \end{pmatrix} \\ \lambda + x_2, y_2 \end{pmatrix} = \begin{pmatrix} \max \\ \end{pmatrix}$ | $ \begin{pmatrix} \lambda + x_1, y_1, \lambda + x_2, y_2 \end{pmatrix} \\ \max(\lambda + x_1, y_1) \end{pmatrix} $ |                                                                      |

| The (max,+) semialgebra                                                           | Link with linear algebra<br>00000●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Finite-dim systems                                                               | The heat equation                                      |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------|
| Example                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                                                        |
| Let $d = 2$ and $I(x) = Ax$ , we have:                                            | where $A\coloneqq egin{pmatrix} 1 & 1 \ 2 & 0 \end{pmatrix}$ . Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | en                                                                               |                                                        |
| $\Phi_h(x) = h \log \circ \mathbf{I} \circ \exp\left(x\right)$                    | $(x/h) = h \log \left( \exp \left( \frac{x_1/h}{2 \exp \left( \frac{x_2}{2} + \frac{x_1}{2} + \frac{x_1}{2} + \frac{x_1}{2} + \frac{x_2}{2} + \frac{x_1}{2} + \frac{x_2}{2} + \frac{x_1}{2} + \frac{x_2}{2} + \frac{x_1}{2} + x_$ | $(h) + \exp(x_2/h) \to (x_1/h) \to (h \searrow 0)$                               | $\begin{pmatrix} \max(x_1, x_2) \\ x_1 \end{pmatrix}.$ |
| Define $\Phi(x) \coloneqq \begin{pmatrix} \max(x_1, x_1) \\ x_1 \end{pmatrix}$    | $\left( x_{2} ight)  ight)$ : then for any $\lambda\in\mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(x_1,x_2)$ and $(y_1,y_2)$ ,                                                    |                                                        |
| $\Phi\left(\lambda\otimes x\oplus y\right)=\Phi\left(\max_{\max(\lambda)}\right)$ | $\begin{pmatrix} \lambda + x_1, y_1 \end{pmatrix} = \begin{pmatrix} \max(\lambda \\ n \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\left(\lambda + x_1, y_1, \lambda + x_2, y_2\right)$ $\max(\lambda + x_1, y_1)$ | $=\lambda \otimes \Phi(x) \oplus \Phi(y).$             |

Averil Prost

Link with linear algebra

Finite-dim systems

The heat equation

### Table of Contents

The (max,+) semialgebra

Link with linear algebra

An application: finite-dimensional  $(\max,+)$  system

The heat equation

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems<br>0●0000 |
|-------------------------|--------------------------|------------------------------|
|                         |                          |                              |

The heat equation

# Setting

Consider the (max, +) system

$$\Pi \otimes \xi = \beta, \tag{1}$$

where  $\Pi \in \mathbb{M}_{2,2}$  is a matrix,  $\xi, \beta \in \mathbb{R}^2$  are vectors with  $\beta$  given, and for each  $i \in \llbracket 1, 2 \rrbracket$ ,

$$(\Pi \otimes \xi)_i = \sum_{j \in \llbracket 1, 2 \rrbracket}^{\oplus} \Pi_{ij} \otimes \xi_j = \max_{j \in \llbracket 1, 2 \rrbracket} \Pi_{ij} + \xi_j.$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems<br>0●0000 | The heat equation |
|-------------------------|--------------------------|------------------------------|-------------------|
|                         |                          |                              |                   |

# Setting

Consider the (max, +) system

$$\Pi \otimes \xi = \beta, \tag{1}$$

where  $\Pi \in \mathbb{M}_{2,2}$  is a matrix,  $\xi, \beta \in \mathbb{R}^2$  are vectors with  $\beta$  given, and for each  $i \in \llbracket 1, 2 \rrbracket$ ,

$$(\Pi \otimes \xi)_i = \sum_{j \in \llbracket 1, 2 \rrbracket}^{\oplus} \Pi_{ij} \otimes \xi_j = \max_{j \in \llbracket 1, 2 \rrbracket} \Pi_{ij} + \xi_j.$$

In which cases can we get a solution to (1) by using the link with classical algebra?

| A | veril | Prost |  |
|---|-------|-------|--|
|   |       |       |  |

# Transformation into linear variables

For each h > 0, define  $P \in \mathbb{M}_{2,2}$  and  $x, b \in \mathbb{R}^2$  by

$$P_{ij}^h \coloneqq \exp(\Pi_{ij}/h), \qquad x_j^h \coloneqq \exp(\xi_j/h), \qquad b_i^h \coloneqq \exp(\beta_i/h).$$

#### Transformation into linear variables

For each h > 0, define  $P \in \mathbb{M}_{2,2}$  and  $x, b \in \mathbb{R}^2$  by

$$P_{ij}^h \coloneqq \exp(\Pi_{ij}/h), \qquad x_j^h \coloneqq \exp(\xi_j/h), \qquad b_i^h \coloneqq \exp(\beta_i/h).$$

The linear system  $P^h x^h = b^h$  has a solution if  $\det(P^h) \neq 0,$  i.e.

$$P_{11}^h P_{22}^h - P_{12}^h P_{21}^h \neq 0 \qquad \iff \qquad \exp\left(\frac{\Pi_{11} + \Pi_{22}}{h}\right) \neq \exp\left(\frac{\Pi_{12} + \Pi_{21}}{h}\right).$$

#### Transformation into linear variables

For each h > 0, define  $P \in \mathbb{M}_{2,2}$  and  $x, b \in \mathbb{R}^2$  by

$$P_{ij}^h \coloneqq \exp(\prod_{ij}/h), \qquad x_j^h \coloneqq \exp(\xi_j/h), \qquad b_i^h \coloneqq \exp(\beta_i/h).$$

The linear system  $P^h x^h = b^h$  has a solution if  $\det(P^h) \neq 0$ , i.e.

$$P_{11}^h P_{22}^h - P_{12}^h P_{21}^h \neq 0 \qquad \Longleftrightarrow \qquad \exp\left(\frac{\Pi_{11} + \Pi_{22}}{h}\right) \neq \exp\left(\frac{\Pi_{12} + \Pi_{21}}{h}\right).$$

#### Transformation into linear variables

For each h > 0, define  $P \in \mathbb{M}_{2,2}$  and  $x, b \in \mathbb{R}^2$  by

$$P_{ij}^h \coloneqq \exp(\prod_{ij}/h), \qquad x_j^h \coloneqq \exp(\xi_j/h), \qquad b_i^h \coloneqq \exp(\beta_i/h).$$

The linear system  $P^h x^h = b^h$  has a solution if  $\det(P^h) \neq 0,$  i.e.

$$P_{11}^h P_{22}^h - P_{12}^h P_{21}^h \neq 0 \qquad \iff \qquad \exp\left(\frac{\Pi_{11} + \Pi_{22}}{h}\right) \neq \exp\left(\frac{\Pi_{12} + \Pi_{21}}{h}\right).$$

$$\beta = h \log(b^h)$$

#### Transformation into linear variables

For each h > 0, define  $P \in \mathbb{M}_{2,2}$  and  $x, b \in \mathbb{R}^2$  by

$$P_{ij}^h \coloneqq \exp(\prod_{ij}/h), \qquad x_j^h \coloneqq \exp(\xi_j/h), \qquad b_i^h \coloneqq \exp(\beta_i/h).$$

The linear system  $P^h x^h = b^h$  has a solution if  $\det(P^h) \neq 0,$  i.e.

$$P_{11}^h P_{22}^h - P_{12}^h P_{21}^h \neq 0 \qquad \iff \qquad \exp\left(\frac{\Pi_{11} + \Pi_{22}}{h}\right) \neq \exp\left(\frac{\Pi_{12} + \Pi_{21}}{h}\right).$$

$$\beta = h \log(b^h) = h \log\left(P^h x^h\right)$$

### Transformation into linear variables

For each h > 0, define  $P \in \mathbb{M}_{2,2}$  and  $x, b \in \mathbb{R}^2$  by

$$P_{ij}^h \coloneqq \exp(\prod_{ij}/h), \qquad x_j^h \coloneqq \exp(\xi_j/h), \qquad b_i^h \coloneqq \exp(\beta_i/h).$$

The linear system  $P^h x^h = b^h$  has a solution if  $\det(P^h) \neq 0,$  i.e.

$$P_{11}^h P_{22}^h - P_{12}^h P_{21}^h \neq 0 \qquad \iff \qquad \exp\left(\frac{\Pi_{11} + \Pi_{22}}{h}\right) \neq \exp\left(\frac{\Pi_{12} + \Pi_{21}}{h}\right).$$

$$\beta = h \log(b^h) = h \log\left(P^h x^h\right) = h \log\left(\sum_{j \in [\![1,2]\!]} \exp\left(\frac{\Pi_{ij} + \xi_j}{h}\right)\right)$$

### Transformation into linear variables

For each h > 0, define  $P \in \mathbb{M}_{2,2}$  and  $x, b \in \mathbb{R}^2$  by

$$P_{ij}^h \coloneqq \exp(\prod_{ij}/h), \qquad x_j^h \coloneqq \exp(\xi_j/h), \qquad b_i^h \coloneqq \exp(\beta_i/h).$$

The linear system  $P^h x^h = b^h$  has a solution if  $\det(P^h) \neq 0,$  i.e.

$$P_{11}^h P_{22}^h - P_{12}^h P_{21}^h \neq 0 \qquad \iff \qquad \exp\left(\frac{\Pi_{11} + \Pi_{22}}{h}\right) \neq \exp\left(\frac{\Pi_{12} + \Pi_{21}}{h}\right).$$

$$\beta = h \log(b^h) = h \log\left(P^h x^h\right) = h \log\left(\sum_{j \in [\![1,2]\!]} \exp\left(\frac{\Pi_{ij} + \xi_j}{h}\right)\right) \xrightarrow[h \searrow 0]{} \Pi \otimes \xi.$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems<br>000●00 | The heat equation |
|-------------------------|--------------------------|------------------------------|-------------------|
| Going back              |                          |                              |                   |

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 000●00             |                   |
| Going back              |                          |                    |                   |

$$\forall i \in [\![1,2]\!], \quad x_i^h = \left( (P^h)^{-1} b \right)_i \ge 0.$$
 (2)

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 000●00             |                   |
| Going back              |                          |                    |                   |

$$\forall i \in [\![1,2]\!], \quad x_i^h = \left( (P^h)^{-1} b \right)_i \ge 0.$$
 (2)

One also obtains that  $(x^h)_h$  is bounded uniformly in h. By compactness, (1) admits solutions.

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 000●00             |                   |
| Going back              |                          |                    |                   |

$$\forall i \in [\![1,2]\!], \quad x_i^h = \left( (P^h)^{-1} b \right)_i \ge 0.$$
 (2)

One also obtains that  $(x^h)_h$  is bounded uniformly in h. By compactness, (1) admits solutions. Example Consider for instance

$$\Pi = \begin{pmatrix} \mathbb{I} & \mathbb{0} \\ \mathbb{0} & \mathbb{I} \end{pmatrix} = \begin{pmatrix} 0 & -\infty \\ -\infty & 0 \end{pmatrix}$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 000●00             |                   |
| Going back              |                          |                    |                   |

$$\forall i \in [\![1,2]\!], \quad x_i^h = \left( (P^h)^{-1} b \right)_i \ge 0.$$
 (2)

One also obtains that  $(x^h)_h$  is bounded uniformly in h. By compactness, (1) admits solutions. **Example** Consider for instance

$$\Pi = \begin{pmatrix} \mathbb{I} & \mathbb{0} \\ \mathbb{0} & \mathbb{I} \end{pmatrix} = \begin{pmatrix} 0 & -\infty \\ -\infty & 0 \end{pmatrix} \implies P = \mathbb{I}_d.$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 000●00             |                   |
| Going back              |                          |                    |                   |

$$\forall i \in [\![1,2]\!], \quad x_i^h = \left( (P^h)^{-1} b \right)_i \ge 0.$$
 (2)

One also obtains that  $(x^h)_h$  is bounded uniformly in h. By compactness, (1) admits solutions. Example Consider for instance

$$\Pi = \begin{pmatrix} \mathbb{I} & \mathbb{0} \\ \mathbb{0} & \mathbb{I} \end{pmatrix} = \begin{pmatrix} 0 & -\infty \\ -\infty & 0 \end{pmatrix} \implies P = \mathbb{I}_d.$$

Then  $P^{-1} = \mathbb{I}_d$ . As (2) is satisfied for all  $b = \exp(\beta/h)$ , we obtain that  $\xi = \beta$  solves (1).

| The ( | (max,+) | semialg | ebra |
|-------|---------|---------|------|
|       |         |         |      |

Link with linear algebra

Finite-dim systems 0000●0

The heat equation

## Another example

#### ${\sf Consider}$

$$\Pi = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

| The ( | (max,+) | semialgebra |
|-------|---------|-------------|
|       |         |             |

Link with linear algebra

Finite-dim systems 0000●0

The heat equation

## Another example

#### Consider

$$\Pi = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \implies P = \begin{pmatrix} e^{1/h} & e^{2/h} \\ e^{4/h} & e^{3/h} \end{pmatrix},$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 0000●0             |                   |
|                         |                          |                    |                   |

Consider

$$\Pi = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \implies P = \begin{pmatrix} e^{1/h} & e^{2/h} \\ e^{4/h} & e^{3/h} \end{pmatrix}, \quad P^{-1} = \frac{1}{e^{4/h} - e^{6/h}} \begin{pmatrix} e^{3/h} & -e^{2/h} \\ -e^{4/h} & e^{1/h} \end{pmatrix}$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 0000●0             |                   |
|                         |                          |                    |                   |

Consider

$$\Pi = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \implies P = \begin{pmatrix} e^{1/h} & e^{2/h} \\ e^{4/h} & e^{3/h} \end{pmatrix}, \quad P^{-1} = \frac{1}{e^{4/h} - e^{6/h}} \begin{pmatrix} e^{3/h} & -e^{2/h} \\ -e^{4/h} & e^{1/h} \end{pmatrix}$$

Since  $\det P^h = e^{4/h} - e^{6/h} < 0$ , the condition (2) over  $\beta$  becomes

$$e^{\frac{3+\beta_1}{h}}-e^{\frac{4+\beta_2}{h}}\leqslant 0, \quad \text{and} \quad -e^{\frac{2+\beta_1}{h}}+e^{\frac{1+\beta_2}{h}}\leqslant 0.$$

| <b>The (ma</b> x,+) <b>semialgebra</b> | Link with linear algebra | Finite-dim systems | The heat equation |
|----------------------------------------|--------------------------|--------------------|-------------------|
| 0000                                   | 000000                   | 0000●0             |                   |
|                                        |                          |                    |                   |

Consider

$$\Pi = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \implies P = \begin{pmatrix} e^{1/h} & e^{2/h} \\ e^{4/h} & e^{3/h} \end{pmatrix}, \quad P^{-1} = \frac{1}{e^{4/h} - e^{6/h}} \begin{pmatrix} e^{3/h} & -e^{2/h} \\ -e^{4/h} & e^{1/h} \end{pmatrix}$$

Since  $\det P^h = e^{4/h} - e^{6/h} < 0$ , the condition (2) over  $\beta$  becomes

$$e^{\frac{3+\beta_1}{h}} - e^{\frac{4+\beta_2}{h}} \leqslant 0, \quad \text{and} \quad -e^{\frac{2+\beta_1}{h}} + e^{\frac{1+\beta_2}{h}} \leqslant 0. \qquad \text{Equivalently}, \qquad |\beta_1 - \beta_2| \leqslant 1.$$

| <b>The (ma</b> x,+) <b>semialgebra</b> | Link with linear algebra | Finite-dim systems | The heat equation |
|----------------------------------------|--------------------------|--------------------|-------------------|
| 0000                                   | 000000                   | 0000●0             |                   |
|                                        |                          |                    |                   |

Consider

$$\Pi = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \implies P = \begin{pmatrix} e^{1/h} & e^{2/h} \\ e^{4/h} & e^{3/h} \end{pmatrix}, \quad P^{-1} = \frac{1}{e^{4/h} - e^{6/h}} \begin{pmatrix} e^{3/h} & -e^{2/h} \\ -e^{4/h} & e^{1/h} \end{pmatrix}$$

Since  $\det P^h = e^{4/h} - e^{6/h} < 0$ , the condition (2) over  $\beta$  becomes

$$e^{\frac{3+\beta_1}{\hbar}} - e^{\frac{4+\beta_2}{\hbar}} \leqslant 0, \quad \text{and} \quad -e^{\frac{2+\beta_1}{\hbar}} + e^{\frac{1+\beta_2}{\hbar}} \leqslant 0. \qquad \text{Equivalently}, \qquad |\beta_1 - \beta_2| \leqslant 1.$$

Whenever this condition is satisfied, the solution is given by

$$\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \lim_{h \searrow 0} \begin{pmatrix} h \log \left( e^{\frac{4+\beta_2}{h}} - e^{\frac{3+\beta_1}{h}} \right) - h \log \left( e^{6/h} - e^{4/h} \right) \\ h \log \left( e^{\frac{2+\beta_1}{h}} - e^{\frac{1+\beta_2}{h}} \right) - h \log \left( e^{6/h} - e^{4/h} \right) \end{pmatrix}$$

Averil Prost

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 0000●0             |                   |
|                         |                          |                    |                   |

Consider

$$\Pi = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \implies P = \begin{pmatrix} e^{1/h} & e^{2/h} \\ e^{4/h} & e^{3/h} \end{pmatrix}, \quad P^{-1} = \frac{1}{e^{4/h} - e^{6/h}} \begin{pmatrix} e^{3/h} & -e^{2/h} \\ -e^{4/h} & e^{1/h} \end{pmatrix}$$

Since  $\det P^h = e^{4/h} - e^{6/h} < 0$ , the condition (2) over  $\beta$  becomes

$$e^{\frac{3+\beta_1}{\hbar}} - e^{\frac{4+\beta_2}{\hbar}} \leqslant 0, \quad \text{and} \quad -e^{\frac{2+\beta_1}{\hbar}} + e^{\frac{1+\beta_2}{\hbar}} \leqslant 0. \qquad \text{Equivalently}, \qquad |\beta_1 - \beta_2| \leqslant 1.$$

Whenever this condition is satisfied, the solution is given by

$$\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \lim_{h \searrow 0} \begin{pmatrix} h \log \left( e^{\frac{4+\beta_2}{h}} - e^{\frac{3+\beta_1}{h}} \right) - h \log \left( e^{6/h} - e^{4/h} \right) \\ h \log \left( e^{\frac{2+\beta_1}{h}} - e^{\frac{1+\beta_2}{h}} \right) - h \log \left( e^{6/h} - e^{4/h} \right) \end{pmatrix} = \begin{pmatrix} 4+\beta_2 - 6 \\ 2+\beta_1 - 6 \end{pmatrix}$$

Averil Prost

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 0000●0             |                   |
|                         |                          |                    |                   |

## Another example

Consider

$$\Pi = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \implies P = \begin{pmatrix} e^{1/h} & e^{2/h} \\ e^{4/h} & e^{3/h} \end{pmatrix}, \quad P^{-1} = \frac{1}{e^{4/h} - e^{6/h}} \begin{pmatrix} e^{3/h} & -e^{2/h} \\ -e^{4/h} & e^{1/h} \end{pmatrix}$$

Since  $\det P^h = e^{4/h} - e^{6/h} < 0$ , the condition (2) over  $\beta$  becomes

$$e^{\frac{3+\beta_1}{h}} - e^{\frac{4+\beta_2}{h}} \leqslant 0, \quad \text{and} \quad -e^{\frac{2+\beta_1}{h}} + e^{\frac{1+\beta_2}{h}} \leqslant 0. \qquad \text{Equivalently}, \qquad |\beta_1 - \beta_2| \leqslant 1.$$

Whenever this condition is satisfied, the solution is given by

$$\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \lim_{h \searrow 0} \begin{pmatrix} h \log \left( e^{\frac{4+\beta_2}{h}} - e^{\frac{3+\beta_1}{h}} \right) - h \log \left( e^{6/h} - e^{4/h} \right) \\ h \log \left( e^{\frac{2+\beta_1}{h}} - e^{\frac{1+\beta_2}{h}} \right) - h \log \left( e^{6/h} - e^{4/h} \right) \end{pmatrix} = \begin{pmatrix} 4+\beta_2 - 6 \\ 2+\beta_1 - 6 \end{pmatrix} = \begin{pmatrix} \beta_2 - 2 \\ \beta_1 - 4 \end{pmatrix}$$

.

| The ( | (max,+) | semialgebra |  |
|-------|---------|-------------|--|
|       |         |             |  |

Link with linear algebra

Finite-dim systems 00000●

The heat equation

## To go further

Of course, the bulky reasoning may be refined.

## To go further

Of course, the bulky reasoning may be refined.

• Algorithms to solve linear problems may be transposed in the (max, +) semialgebra (for instance, Euler scheme ⇒ the semi-lagrangian).

## To go further

Of course, the bulky reasoning may be refined.

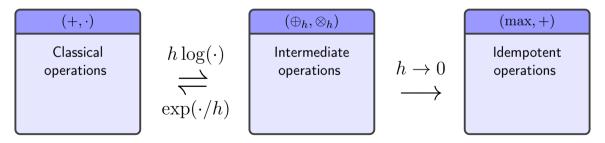
• Algorithms to solve linear problems may be transposed in the (max, +) semialgebra (for instance, Euler scheme ⇒ the semi-lagrangian). Even tropical finite elements [McE06]!

Finite-dim systems

# To go further

Of course, the bulky reasoning may be refined.

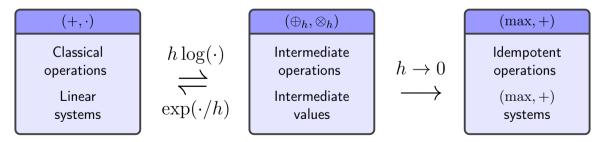
• Algorithms to solve linear problems may be transposed in the (max, +) semialgebra (for instance, Euler scheme ⇒ the semi-lagrangian). Even tropical finite elements [McE06]!



# To go further

Of course, the bulky reasoning may be refined.

• Algorithms to solve linear problems may be transposed in the (max, +) semialgebra (for instance, Euler scheme ⇒ the semi-lagrangian). Even tropical finite elements [McE06]!



Finite-dim systems

## Table of Contents

The (max,+) semialgebra

Link with linear algebra

An application: finite-dimensional  $(\max, +)$  system

The heat equation

 $\ensuremath{\operatorname{FIRST}}$  ORDER Consider the first-order transport equation

$$\partial_t u(t,x) - \langle \nabla u(t,x), b(t,x) \rangle = 0.$$

 $\operatorname{FIRST}$  ORDER Consider the first-order transport equation

$$\partial_t u(t,x) - \langle \nabla u(t,x), b(t,x) \rangle = 0.$$

Assume that  $u \ge 0$ , and define

$$v(t,x) = h \log(u(t,x)),$$
 i.e.  $u(t,x) = \exp(u(t,x)/h).$ 

 $\operatorname{First}$  order  $% \operatorname{Consider}$  denotes the first-order transport equation

$$\partial_t u(t,x) - \langle \nabla u(t,x), b(t,x) \rangle = 0.$$

Assume that  $u \ge 0$ , and define

$$v(t,x) = h \log(u(t,x)),$$
 i.e.  $u(t,x) = \exp(u(t,x)/h).$ 

Then

$$\partial_t u = \frac{\exp(v/h)}{h} \partial_t v, \quad \nabla u = \frac{\exp(v/h)}{h} \nabla v,$$
(3)

 $\label{eq:First-order} First \text{ order } the \ first \text{-order } transport \ equation$ 

$$\partial_t u(t,x) - \langle \nabla u(t,x), b(t,x) \rangle = 0.$$

Assume that  $u \ge 0$ , and define

$$v(t,x) = h \log(u(t,x)),$$
 i.e.  $u(t,x) = \exp(u(t,x)/h).$ 

Then

$$\partial_t u = \frac{\exp(v/h)}{h} \partial_t v, \quad \nabla u = \frac{\exp(v/h)}{h} \nabla v,$$
 (3)

so that after dividing by  $\frac{\exp(v/h)}{h} > 0$ , we get again  $\partial_t v(t,x) - \langle \nabla v(t,x), b(t,x) \rangle = 0$ .

| The (max,+) semialgebra<br>0000 | Link with linear algebra | Finite-dim systems | The heat equation<br>00●000000 |
|---------------------------------|--------------------------|--------------------|--------------------------------|
|                                 |                          |                    |                                |

 $\operatorname{Second}$  order  $% \operatorname{Consider}$  how the heat equation

 $\partial_t u(t,x) - h\Delta u(t,x) = 0.$ 

| The (max,+) semialgebra | Link with linear algebra<br>000000 | Finite-dim systems | The heat equation |
|-------------------------|------------------------------------|--------------------|-------------------|
|                         |                                    |                    |                   |

 $\begin{array}{c|c} {\rm Second \ order} \end{array} \mbox{ Consider now the heat equation} \\ \end{array}$ 

$$\partial_t u(t,x) - h\Delta u(t,x) = 0.$$

Let again  $v = h \log(u)$ , i.e.  $u = \exp(v/h)$ . Then in addition to (3), there holds

$$\Delta u = \frac{\exp(v/t)}{h} \Delta v + \frac{\exp(v/t)}{h^2} |\nabla v|^2.$$

| <b>The (max,+) semialgebra</b><br>0000 | Link with linear algebra<br>000000 | Finite-dim systems | The heat equation |
|----------------------------------------|------------------------------------|--------------------|-------------------|
|                                        |                                    |                    |                   |

SECOND ORDER Consider now the heat equation

$$\partial_t u(t,x) - h\Delta u(t,x) = 0.$$

Let again  $v = h \log(u)$ , i.e.  $u = \exp(v/h)$ . Then in addition to (3), there holds

$$\Delta u = \frac{\exp(v/t)}{h} \Delta v + \frac{\exp(v/t)}{h^2} |\nabla v|^2.$$

Hence

$$\frac{\exp(v/h)}{h}\partial_t v - h\left(\frac{\exp(v/t)}{h}\Delta v + \frac{\exp(v/t)}{h^2}\left|\nabla v\right|^2\right) = 0,$$

| <b>The (max,+) semialgebra</b> | Link with linear algebra | Finite-dim systems | The heat equation |
|--------------------------------|--------------------------|--------------------|-------------------|
| 0000                           | 000000                   |                    | 00●000000         |
|                                |                          |                    |                   |

 $\begin{array}{c|c} {\rm Second \ order} \end{array} \mbox{ Consider now the heat equation} \\ \end{array}$ 

$$\partial_t u(t,x) - h\Delta u(t,x) = 0.$$

Let again  $v = h \log(u)$ , i.e.  $u = \exp(v/h)$ . Then in addition to (3), there holds

$$\Delta u = \frac{\exp(v/t)}{h} \Delta v + \frac{\exp(v/t)}{h^2} |\nabla v|^2.$$

Hence

$$\frac{\exp(v/h)}{h}\partial_t v - h\left(\frac{\exp(v/t)}{h}\Delta v + \frac{\exp(v/t)}{h^2}\left|\nabla v\right|^2\right) = 0,$$

or after simplification,

$$\partial_t v(t,x) - h\Delta v(t,x) - |\nabla v(t,x)|^2 = 0.$$

| The (max,+) semialgebra | Link with linear algebra<br>000000 | Finite-dim systems<br>000000 | <b>The heat equation</b> |
|-------------------------|------------------------------------|------------------------------|--------------------------|
|                         |                                    |                              |                          |

#### A link with viscosity solutions

Def 4 – (Historical intuition, see [CL83]) The vanishing viscosity solution of  $\partial_t v - |\nabla v|^2 = 0$ 

is the limit when h goes to 0 of the (unique) solution of the equation

 $\partial_t v - h\Delta v - |\nabla v|^2 = 0.$ 

| Averil Prost |
|--------------|
|--------------|

### A link with viscosity solutions

Def 4 - (Historical intuition, see [CL83]) The vanishing viscosity solution of

 $\partial_t v - |\nabla v|^2 = 0$ 

is the limit when h goes to 0 of the (unique) solution of the equation

$$\partial_t v - h\Delta v - |\nabla v|^2 = 0.$$

It may be characterized by two sign inequalities that maintain the validity of the comparison principle coming from the elliptic perturbation.

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 000000             | 0000●0000         |
|                         |                          |                    |                   |

The heat kernel

**Def 5 – Heat kernel** Let  $C_d$  be a normalizing constant, and for any  $(t, x) \in \mathbb{R}^+ \times \mathbb{R}^d$ , define

$$\mu_{t,x}^h \coloneqq \frac{1}{\sqrt{S_d t h}} \exp\left(-\frac{|\cdot - x|^2}{2th}\right) \mathcal{L}_{\mathbb{R}^d} \in \mathscr{P}_2(\mathbb{R}^d).$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    |                          | 000000             | 0000●0000         |
| The heat kernel         |                          |                    |                   |

**Def 5** – **Heat kernel** Let  $C_d$  be a normalizing constant, and for any  $(t, x) \in \mathbb{R}^+ \times \mathbb{R}^d$ , define

$$\mu_{t,x}^h \coloneqq \frac{1}{\sqrt{S_d t h}} \exp\left(-\frac{|\cdot - x|^2}{2th}\right) \mathcal{L}_{\mathbb{R}^d} \in \mathscr{P}_2(\mathbb{R}^d).$$

In particular,  $\mu^h_{t,x} \underset{t\searrow 0}{\longrightarrow} \delta_x$  narrowly and in the Wasserstein topology.

| The (max,+) semialgebra | Link with linear algebra | <b>Finite-dim systems</b> | <b>The heat equation</b> |
|-------------------------|--------------------------|---------------------------|--------------------------|
| 0000                    | 000000                   | 000000                    |                          |
| <b>T</b> I . I I I      |                          |                           |                          |

**Def 5** – **Heat kernel** Let  $C_d$  be a normalizing constant, and for any  $(t, x) \in \mathbb{R}^+ \times \mathbb{R}^d$ , define

$$\mu_{t,x}^h \coloneqq \frac{1}{\sqrt{S_d t h}} \exp\left(-\frac{|\cdot - x|^2}{2th}\right) \mathcal{L}_{\mathbb{R}^d} \in \mathscr{P}_2(\mathbb{R}^d).$$

In particular,  $\mu^h_{t,x} \underset{t\searrow 0}{\longrightarrow} \delta_x$  narrowly and in the Wasserstein topology.

**Proposition – Kernel representation** The (weak) solution of the heat equation  $\partial_t u(t,x) - h\Delta u(t,x) = 0$  with initial value  $u_0$  is given by

$$u(t,x) = \int_{y \in \mathbb{R}^d} u_0(y) d\mu^h_{t,x}(y).$$

i në nëat kernei

Finite-dim systems

# Going through the transformation

Let  $u_0 > 0$  upper bounded and continuous.

Finite-dim systems

The heat equation

## Going through the transformation

Let  $u_0 > 0$  upper bounded and continuous. Denoting again  $v = h \log(u)$ , and  $v_0 = h \log(u_0)$ ,

$$v(t,x) = h \log \left( \int_{y \in \mathbb{R}^d} \exp \left( \frac{v_0(y)}{h} \right) d\mu_{t,x}^h(y) \right)$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 000000             |                   |
|                         |                          |                    |                   |

## Going through the transformation

Let  $u_0 > 0$  upper bounded and continuous. Denoting again  $v = h \log(u)$ , and  $v_0 = h \log(u_0)$ ,

$$\begin{aligned} v(t,x) &= h \log \left( \int_{y \in \mathbb{R}^d} \exp\left(\frac{v_0(y)}{h}\right) d\mu_{t,x}^h(y) \right) \\ &= h \log\left(\frac{1}{\sqrt{C_d t h}} \int_{y \in \mathbb{R}^d} \exp\left(\frac{v_0(y)}{h}\right) \exp\left(-\frac{|y-x|^2}{2t h}\right) dy \right) \end{aligned}$$

## Going through the transformation

Let  $u_0 > 0$  upper bounded and continuous. Denoting again  $v = h \log(u)$ , and  $v_0 = h \log(u_0)$ ,

$$\begin{split} (t,x) &= h \log \left( \int_{y \in \mathbb{R}^d} \exp \left( \frac{v_0(y)}{h} \right) d\mu_{t,x}^h(y) \right) \\ &= h \log \left( \frac{1}{\sqrt{C_d t h}} \int_{y \in \mathbb{R}^d} \exp \left( \frac{v_0(y)}{h} \right) \exp \left( -\frac{|y-x|^2}{2th} \right) dy \right) \\ &= -\frac{h}{2} \log \left( C_d t h \right) + h \log \left( \int_{y \in \mathbb{R}^d} \exp \left( \frac{1}{h} \left[ v_0(y) - \frac{|y-x|^2}{2t} \right] \right) dy \right) \end{split}$$

v

## Going through the transformation

Let  $u_0 > 0$  upper bounded and continuous. Denoting again  $v = h \log(u)$ , and  $v_0 = h \log(u_0)$ ,

$$\begin{split} v(t,x) &= h \log \left( \int_{y \in \mathbb{R}^d} \exp \left( \frac{v_0(y)}{h} \right) d\mu_{t,x}^h(y) \right) \\ &= h \log \left( \frac{1}{\sqrt{C_d t h}} \int_{y \in \mathbb{R}^d} \exp \left( \frac{v_0(y)}{h} \right) \exp \left( -\frac{|y-x|^2}{2th} \right) dy \right) \\ &= -\frac{h}{2} \log \left( C_d t h \right) + h \log \left( \int_{y \in \mathbb{R}^d} \exp \left( \frac{1}{h} \left[ v_0(y) - \frac{|y-x|^2}{2t} \right] \right) dy \right) \\ &\xrightarrow{h \searrow 0} 0 + \sup_{y \in \mathbb{R}^d} \left[ v_0(y) - \frac{|y-x|^2}{2t} \right]. \end{split}$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    |                          | 000000             | 000000●00         |
|                         |                          |                    |                   |

Let

$$\hat{m}_{t,x} \coloneqq -\frac{|\cdot - x|^2}{2t}, \qquad \hat{\mu}_{t,x}(B) \coloneqq \sup_{y \in B} \hat{m}_{t,x}(y) \quad \forall B \subset \mathbb{R}^d.$$

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    |                          | 000000             | 000000●00         |
|                         |                          |                    |                   |

Let

$$\hat{m}_{t,x} \coloneqq -\frac{|\cdot - x|^2}{2t}, \qquad \hat{\mu}_{t,x}(B) \coloneqq \sup_{y \in B} \hat{m}_{t,x}(y) \quad \forall B \subset \mathbb{R}^d.$$

In the vocabulary of [DMD99],  $\hat{m}_{t,x}$  is the *density* of the *Maslov measure*  $\hat{\mu}_{t,x}$ .

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    |                          | 000000             | 000000●00         |
|                         |                          |                    |                   |

Let

$$\hat{m}_{t,x} \coloneqq -\frac{|\cdot - x|^2}{2t}, \qquad \hat{\mu}_{t,x}(B) \coloneqq \sup_{y \in B} \hat{m}_{t,x}(y) \quad \forall B \subset \mathbb{R}^d$$

In the vocabulary of [DMD99],  $\hat{m}_{t,x}$  is the *density* of the *Maslov measure*  $\hat{\mu}_{t,x}$ .

Proposition – Value function [Lio82] The function

$$V(t,x) \coloneqq \int_{y \in \mathbb{R}^d}^{\oplus} v_0 \otimes \hat{\mu}_{t,x} = \sup_{y \in \mathbb{R}^d} \left[ v_0(y) - \frac{|y-x|^2}{2t} \right]$$
(4)

is the unique viscosity solution of the Hamilton-Jacobi equation  $\partial_t V - |\nabla V|^2 = 0$  such that  $V(0, \cdot) = v_0$ .

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 000000             | 000000●00         |
|                         |                          |                    |                   |

Let

$$\hat{m}_{t,x} \coloneqq -\frac{|\cdot - x|^2}{2t}, \qquad \hat{\mu}_{t,x}(B) \coloneqq \sup_{y \in B} \hat{m}_{t,x}(y) \quad \forall B \subset \mathbb{R}^d$$

In the vocabulary of [DMD99],  $\hat{m}_{t,x}$  is the *density* of the *Maslov measure*  $\hat{\mu}_{t,x}$ .

Proposition – Value function [Lio82] The function

$$V(t,x) \coloneqq \int_{y \in \mathbb{R}^d}^{\oplus} v_0 \otimes \hat{\mu}_{t,x} = \sup_{y \in \mathbb{R}^d} \left[ v_0(y) - \frac{|y-x|^2}{2t} \right]$$
(4)

is the unique viscosity solution of the Hamilton-Jacobi equation  $\partial_t V - |\nabla V|^2 = 0$  such that  $V(0, \cdot) = v_0$ . The formula (4) is known as the Hopf-Lax formula.

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 000000             | 0000000●0         |
| Going further           |                          |                    |                   |

• In the case of the heat equation, **Hopf-Cole** transform. But Lax-Hopf formula valid for a larger class of HJ equations of the type

$$\partial_t V(t,x) + H(x, \nabla V(t,x)) = 0,$$

provided the Hamiltonian H is *concave* in its second variable (+ regularity conditions).

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    |                          | 000000             | 0000000●0         |
| Going further           |                          |                    |                   |

• In the case of the heat equation, **Hopf-Cole** transform. But Lax-Hopf formula valid for a larger class of HJ equations of the type

$$\partial_t V(t,x) + H(x, \nabla V(t,x)) = 0,$$

provided the Hamiltonian H is *concave* in its second variable (+ regularity conditions).

• Maslov measures may be used to recast the Lax-Hopf semigroup as the conditional expectation of Maslov stochastic processes.

| The (max,+) semialgebra | Link with linear algebra | Finite-dim systems | The heat equation |
|-------------------------|--------------------------|--------------------|-------------------|
| 0000                    | 000000                   | 000000             | 0000000●0         |
| Going further           |                          |                    |                   |

• In the case of the heat equation, **Hopf-Cole** transform. But Lax-Hopf formula valid for a larger class of HJ equations of the type

$$\partial_t V(t,x) + H(x, \nabla V(t,x)) = 0,$$

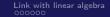
provided the Hamiltonian H is concave in its second variable (+ regularity conditions).

- Maslov measures may be used to recast the Lax-Hopf semigroup as the conditional expectation of Maslov stochastic processes.
- Using the Hopf-Lax semigroup, Maslov defined weak solution by "duality", in the spirit of

$$\langle u, \varphi \rangle_{\oplus} = \langle u_0, S_t^* \varphi \rangle_{\oplus},$$

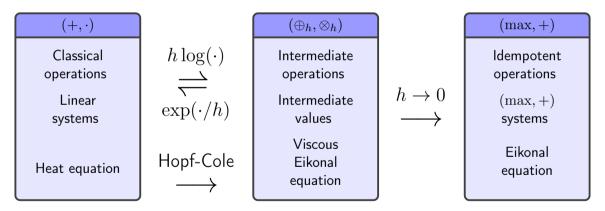
where  $S_t^*$  is a "dual" semigroup acting on test functions  $\varphi$  [KM97, Definition 3.1].

## Conclusion



Finite-dim systems

The heat equation



#### Thank you!

[Aki07] Marianne Akian.

Algèbre Max-plus, Applications Monotones Contractantes et Équations Aux Dérivées Partielles : Trois Approches Du Contrôle Optimal.

Habilitation à diriger les recherches, 2007.

#### [Ang15] Jesus Angulo.

Morphological Scale-Space Operators for Images Supported on Point Clouds.

In Springer-Verlag Berlin Heidelberg, editor, 5th International Conference on Scale Space and Variational Methods in Computer Vision, volume LNCS 9087 of Proc. of SSVM'15 (5th International Conference on Scale Space and Variational Methods in Computer Vision), Lège-Cap Ferret, France, June 2015.

#### [Ang22] Jesús Angulo.

#### Morphological Counterpart of Ornstein–Uhlenbeck Semigroups and PDEs.

In Étienne Baudrier, Benoît Naegel, Adrien Krähenbühl, and Mohamed Tajine, editors, *Discrete Geometry and Mathematical Morphology*, Lecture Notes in Computer Science, pages 169–181, Cham, 2022. Springer International Publishing.

#### [CL83] Michael G. Crandall and Pierre-Louis Lions.

Viscosity solutions of Hamilton-Jacobi equations.

Transactions of the American Mathematical Society, 277(1):1-42, 1983.

| <b>The (max,+</b> ) | ) semialgebra                                                                        | Link with linear algebra<br>000000                                      | Finite-dim systems<br>000000 | The heat equation |
|---------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------|-------------------|
|                     |                                                                                      |                                                                         |                              |                   |
| [DMD99]             | P. Del Moral and M. Dois<br>Maslov Idempotent Proba<br>Theory of Probability & It    |                                                                         | uary 1999.                   |                   |
| [KM97]              | Vassili N. Kolokoltsov and<br>Idempotent Analysis and<br>Springer Netherlands, Dor   | Its Applications.                                                       |                              |                   |
| [Lio82]             |                                                                                      | <i>lamilton-Jacobi Equations.</i><br>otes in Mathematics. Pitman, Bosto | on, 1982.                    |                   |
| [Lit12]             | Grigory L. Litvinov.<br>Idempotent/tropical analy                                    | sis, the Hamilton-Jacobi and Bellma                                     | an equations, March 2012.    |                   |
| [McE06]             | William M. McEneaney.<br><i>Max-plus Methods for No</i><br>Systems and Control. Birk | <i>nlinear Control and Estimation</i> .<br>häuser, Boston, 2006.        |                              |                   |