## (Max,+)

Understanding Hamilton-Jacobi as Maslov processes

## Averil Prost (LMI INSA Rouen)

Dedicated to Виктор Маслов, who unfortunately left us on August 3rd, 2023.

November 16, 2023
Kafemınorıo - Universidad Santa María


## Table of Contents

# Idempotent calculus 

```
Maslov measures
    Definitions
    Random variables
Stochastic processes
    Definition
    Maslov chains
    The link with Hamilton-Jacobi
```

Conclusion

## The (max, + ) idempotent calculus

We consider $\mathbb{R} \cup\{-\infty\}$ endowed with the following operations:

$$
a \oplus b:=\max (a, b), \quad a \otimes b:=a+b
$$

Both operations are commutative and associative, and

$$
a \otimes(b \oplus c)=a+\max (b, c)=\max (a+b, a+c)=(a \otimes b) \oplus(a \otimes c)
$$

Define $\mathbb{D}:=-\infty$ and $\mathbb{I}:=0$. Then

$$
\mathbb{D} \oplus a=\max (-\infty, a)=a, \quad \mathbb{O} \otimes a=-\infty+a=\mathbb{D}, \quad \mathbb{I} \otimes a=a+0=a
$$

Then $(\mathbb{R} \cup\{-\infty\}, \oplus, \otimes, \mathbb{D}, \mathbb{I})$ is a semiring (ring without additive inverse). The name idempotent comes from the fact that $a \oplus a=a$.

## Examples

Define the (max, + ) division ${ }^{\rho}$ by

$$
a \rho b:=a-b
$$

As in the classical algebra, one can't divide by $\mathbb{D}$. With this notation, the classical positive and negative parts of a number become

$$
a_{+}=\max (0, a)=\mathbb{I} \oplus a, \quad a_{-}=\max (0,-a)=\mathbb{I} \oplus(\mathbb{I} \rho a)
$$

One may go further and define the (max, + ) equivalents of the sum and integrals

$$
\sum^{\oplus} a_{i}:=\max _{i \in \llbracket 1, n \rrbracket} a_{i}, \quad \text { and } \quad \int_{\lambda \in \Lambda}^{\oplus} a_{\lambda}:=\sup _{\lambda \in \Lambda} a_{\lambda}
$$

## Table of Contents

## Idempotent calculus

Maslov measures

Definitions
Random variables

```
Stochastic processes
    Definition
    Maslov chains
    The link with Hamilton-Jacobi
```

Conclusion

## Definition

Def 1 - Maslov measure [KM97, in text, p.36] Let $X$ be an Hausdorff and locally compact space, and $\mathcal{X} \subset \mathcal{P}(X)$ a $\sigma$-algebra. A Maslov measure is a map $\mu: \mathcal{X} \rightarrow \overline{\mathbb{R}}$ satisfying

$$
\begin{equation*}
\mu\left(\bigcup_{a \in A} B_{a}\right)=\int_{a \in A}^{\oplus} \mu\left(B_{a}\right)=\sup _{a \in A} \mu\left(B_{a}\right) \tag{1}
\end{equation*}
$$

for any family of sets $\left(B_{a}\right)_{a \in A} \subset \mathcal{X}$.
From (1), one deduces that $\mu(\emptyset)=\mathbb{D}$. A Maslov measure is bounded if $\mu(X) \in \mathbb{R} \cup\{-\infty\}$. By definition, the measure $\mu$ is monotone, in the sense that $\mu(B) \leqslant \mu(X)$ for all $B$ : indeed,

$$
\mu(X)=\mu(B \cup(X \backslash B))=\mu(B) \oplus \mu(X \backslash B)=\max (\mu(B), \mu(X \backslash B))
$$

## Representation (1/2)

Consider $f: X \rightarrow \mathbb{R} \cup\{-\infty\}$ upper bounded, and

$$
\mu(B):=\int_{x \in B}^{\oplus} f(x)=\sup _{x \in B} f(x) .
$$

Then for any family $\left(B_{a}\right)_{a \in A} \subset \mathcal{X}$,

$$
\mu\left(\bigcup_{a \in A} B_{a}\right)=\sup _{x \in \bigcup_{a \in A} B_{a}} f(x)=\sup _{a \in A} \sup _{x \in B_{a}} f(x)=\int_{a \in A}^{\oplus} \int_{x \in B_{a}}^{\oplus} f(x)=\int_{a \in A}^{\oplus} \mu(B) .
$$

Moreover,

$$
\mu(X)=\sup _{x \in X} f(x) \leqslant \Pi f \rrbracket
$$

so that $\mu$ is a bounded Maslov measure.

## Representation (2/2)

Conversely, consider $\mu$ a bounded Maslov measure, and define

$$
f: X \rightarrow \mathbb{R} \cup\{-\infty\}, \quad f(x):=\mu(\{x\})
$$

Then for any set $B \in \mathcal{X}$,

$$
\mu(B)=\mu\left(\bigcup_{x \in B}\{x\}\right)=\int_{x \in B}^{\oplus} \mu(\{x\})=\int_{x \in B}^{\oplus} f(x)
$$

Moreover $f(x)=\mu(\{x\}) \leqslant \mu(X)$, and $f$ is upper bounded.
All Maslov measures admit a density $f: X \rightarrow \mathbb{R} \cup\{-\infty\}$ such that $\mu(B)=\int_{x \in B}^{\oplus} f(x)$.

## Definition

Def 2 - Maslov random variable Let $(X, \mathcal{X}, \mu)$ a Maslov measured space, and $(E, \mathcal{E})$ a measurable space. A random variable is a $(\mathcal{X}, \mathcal{E})$-measurable map $V: X \rightarrow E$.

Not the only definition ([DMD99, Definition 3] asks for a continuity condition), but simple. For any random variable $V$, define the law $\mu_{V}:=V \# \mu$ as

$$
\mu_{V}: \mathcal{E} \rightarrow \mathbb{R} \cup\{-\infty\}, \quad \mu_{V}(B):=(V \# \mu)(B)=\mu\left(V^{-1}(B)\right)=\mu(\{x \in X \mid V(x) \in B\}) .
$$

Then

$$
\mu_{V}(B)=\sup _{x \in V^{-1}(B)} f(x)=\sup _{a \in B} \inf _{x \in X, V(x)=a} f(x)=\int_{a \in B}^{\oplus} g(a),
$$

where $g: E \rightarrow \mathbb{R} \cup\{-\infty\}$ is given by $g(a)=\sup _{x \in X, V(x)=a} f(x)=\mu\left(V^{-1}(\{a\})\right)$. As $\mu_{V}$ is trivially upper bounded, $\mu_{V}$ is a bounded Maslov measure on $(E, \mathcal{E})$.

## Example

Consider $X=\mathbb{R}$, the Maslov measure $\mu$ of density $f(x)=-|x|$ and the random variable

$$
V: \mathbb{R} \rightarrow \mathbb{R}, \quad V(x)=\sin (x)
$$

Then for all $B \subset X$,

$$
\mu_{V}(B)=\mu(\{x \in \mathbb{R} \mid \sin (x) \in B\})=\sup _{x \in \mathbb{R}, \sin (x) \in B}-|x|,
$$

and the density of $\mu_{V}$ is

$$
f_{V}(y)=\mu_{V}(\{y\})=\sup _{x \in \sin ^{-1}(\{y\})}-|x|= \begin{cases}-|\arcsin (y)| & \text { if } y \in[-1,1] \\ \mathbb{0} & \text { otherwise }\end{cases}
$$

## Table of Contents

## Idempotent calculus

## Maslov measures

Definitions
Random variables
Stochastic processes
Definition
Maslov chains
The link with Hamilton-Jacobi

## Stochastic process

Let $(X, \mathcal{X}, \mu)$ be a Maslov measured space. Let $\left(\mathcal{F}_{t}\right)_{t}$ be a filtration over a metric space $(E, d)$.
Def 3 - Maslov stochastic process (inspired from [DMD99, Definition 7]) A Maslov stochastic process over $[0, T]$ with values in a metric space $(E, d)$ is a family $P=\left(P_{t}\right)_{t \in[0, T]}$ of Maslov random variables $P_{t}: X \rightarrow E$ such that each $P_{t}$ is $\left(\mathcal{X}, \mathcal{F}_{t}\right)$-measurable.

The interpretation of $P$ is that

- $t \mapsto P_{t}(x)$ is a curve in $E$,
- $x \mapsto P_{t}(x)$ is the state of $P$ at time $t$.

For instance, $X$ could be $\left\{\left(x_{0}, v\right) \mid x_{0} \in \mathbb{R}^{d}, v \in \mathrm{~T}_{x_{0}} \mathbb{R}^{d}\right\}$, and $P_{t}(x)=P_{t}\left(x_{0}, v\right)$ be the point $x_{0}+t v$, i.e. the evaluation at time $t$ of the trajectory issued from $x_{0}$ following the control $v$.

## Maslov chains

Consider again $(X, \mathcal{X}, \mu)$ a Maslov measured space. Recall that

$$
\mu(A \mid B)=\mu(A \cap B) \rho \mu(B)=\mu(A \cap B)-\mu(B)
$$

by the Maslov-Bayes formula.

Def 4 - Maslov chain (Freely inspired from [DMD99, Definition 8]) Let $P=\left(P_{t}\right)_{t}$ be a stochastic process. $P$ is a Maslov chain if for any $0 \leqslant t_{0} \leqslant t_{1} \leqslant \cdots \leqslant t_{n} \leqslant T$ and $A_{i} \in \mathcal{F}_{t_{i}}$ for $i \in \llbracket 0, n \rrbracket$, there holds

$$
\mu\left(P_{t_{n}} \in A_{n} \mid P_{t_{n-1}} \in A_{n-1} \cap \cdots \cap P_{t_{0}} \in A_{0}\right)=\mu\left(P_{t_{n}} \in A_{n} \mid P_{t_{n-1}} \in A_{n-1}\right)
$$

## Backward equations (1/2)

Let $J: E \rightarrow \mathbb{R} \cup\{-\infty\}$ be an arbitrary map, and denote

$$
u(t, x)=\int_{y \in E}^{\oplus} J(y) \otimes \mu\left\{P_{T}=y \mid P_{t}=x\right\}
$$

Under the previous notations, there holds for all $0 \leqslant t \leqslant \tau \leqslant T$ that

$$
\begin{aligned}
u(t, x) & =\int_{y \in E}^{\oplus} J(y) \otimes \mu\left\{P_{T}=y \cap P_{t}=x\right\} \rho \mu\left\{P_{t}=x\right\} \\
& =\int_{z \in E}^{\oplus} \int_{y \in E}^{\oplus} J(y) \otimes \mu\left\{P_{T}=y \cap P_{\tau}=z \cap P_{t}=x\right\} \rho \mu\left\{P_{t}=x\right\} \\
& =\int_{z \in E}^{\oplus} \int_{y \in E}^{\oplus} J(y) \otimes \mu\left\{P_{T}=y \mid P_{\tau}=z\right\} \otimes \mu\left\{P_{\tau}=z \cap P_{t}=x\right\} \rho \mu\left\{P_{t}=x\right\} \\
& =\int_{z \in E}^{\oplus} u(\tau, z) \otimes \mu\left\{P_{\tau}=z \mid P_{t}=x\right\}
\end{aligned}
$$

## Backward equations (2/2)

More explicitely, there holds for all $h \in[0, T-t]$ that

$$
\begin{equation*}
u(t, x)=\int_{z \in E}^{\oplus} u(t+h, z) \otimes \mu\left\{P_{t+h}=z \mid P_{t}=x\right\}=\sup _{z \in E}\left[u(t+h, z)+\mathcal{L}_{t, t+h}(x, z)\right], \tag{2}
\end{equation*}
$$

where

$$
\mathcal{L}_{t, t+h}(x, z):=\mu\left\{P_{t+h}=z \mid P_{t}=x\right\} .
$$

Notice moreover that

$$
u(T, x)=\int_{y \in E}^{\oplus} J(y) \otimes \mu\left\{P_{T}=y \mid P_{T}=x\right\}=J(x)
$$

## The link with Hamilton-Jacobi-Bellman equations

In the context of Hamilton-Jacobi-Bellman equations, (2) is called the Dynamic Programming Principle. It is the equation satisfied by the value function $u$ of a control problem written as

$$
\text { Find } \alpha^{*} \in L^{0}([0, T] ; A) \text { maximizing } \alpha \mapsto \int_{r=0}^{T} \ell\left(r, \gamma_{r}^{0, x, \alpha}, \alpha(r)\right) d r+J\left(\gamma_{T}^{0, x, \alpha}\right)
$$

The map $J$ is the terminal cost of the control problem, the curves $\left(\gamma_{r}^{0, x, \alpha}\right)_{s \in[0, T]}$ are the trajectories (usually solutions of $\frac{d}{d t} \gamma_{t}=f\left(t, \gamma_{t}, \alpha(t)\right)$ ) and the map $\mathcal{L}$ is given by

$$
\mathcal{L}_{t, t+h}(x, z):=\sup _{\alpha \in L^{0}([t, t+h] ; A), \gamma_{t+h}^{t, x, \alpha}=z} \int_{r=t}^{t+h} \ell\left(r, \gamma_{r}^{t, x, \alpha}, \alpha(r)\right) d r .
$$

The quantity $\mathcal{L}_{t, t+h}(x, z)$ is interpreted as the maximal gain achievable from $(t, x)$ to $(t+h, z)$.

## More HJB

Under regularity assumptions over the dynamical system and $J$, it is shown that $u$ is the viscosity solution of the HJB equation

$$
\begin{equation*}
-\partial_{t} u(t, x)+\inf _{\alpha \in A}-\langle\nabla u(t, x), f(t, x, \alpha)\rangle=0, \quad u(T, x)=J(x) \tag{3}
\end{equation*}
$$

In the (max, +)-algebra, the equation is linear: there holds that
$u_{0}, u_{1}$ solutions of (3) for $J_{0}, J_{1} \quad \Longrightarrow \quad a \otimes u_{0} \oplus u_{1}$ solution of (3) for $a \otimes J_{0} \oplus J_{1}$.
Moreover the viscosity solution is known to be the maximal subsolution, i.e. the largest of the maps that satisfy

$$
v(t, x) \leqslant \int_{y \in E}^{\oplus} \mathcal{L}_{t, t+h}(x, y) \otimes v(t+h, y) \quad \forall h \in[0, T-t], x \in E
$$

## Table of Contents

```
Idempotent calculus
Maslov measures
    Definitions
    Random variables
Stochastic processes
    Definition
    Maslov chains
    The link with Hamilton-Jacobi
```

Conclusion

## High time to conclude

In this talk, we have seen

- the definition of the (max, +) "algebra", and the associated Maslov measures,
- the Maslov-Chapman-Kolmogorov equations for Maslov stochastic processes,
- that Hamilton-Jacobi equations are satisfied by the conditional expectations of the Maslov stochastic processes.
The theory of idempotent calculus is quite widely developed, with
- its own set of linear equations: Hamilton-Jacobi-Bellman.
- its own heat equation: the Eikonal equation.
- its own weak formulation by "duality" with the "linear" applications.
- its own numerical methods (tropical finite elements!)

But that exceeds by far the content of this talk...

## Thank you!

[DMD99] P. Del Moral and M. Doisy.
Maslov Idempotent Probability Calculus, I.
Theory of Probability \& Its Applications, 43(4):562-576, January 1999.
[KM97] Vassili N. Kolokoltsov and Victor P. Maslov.
Idempotent Analysis and Its Applications.
Springer Netherlands, Dordrecht, 1997.

