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Definition of measures The Wasserstein space Curves Hodge decomposition

What is a measure

An object modelling the presence of mass.
• continuous: fluids, earth, light... Typically

the Lebesgue measure.

• discrete: people, histograms, money...
Typically Dirac masses.

Def 1 – Probability measure
Let (Ω;Σ) be a measurable
space. A probability measure µ
is an application from Σ to [0, 1]
such that µ(Ω) = 1 and for any
disjoint sequence (Ai)i∈N,

µ

( ⊔
i∈N

Ai

)
=

∑
i∈N

µ(Ai).
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Why are we interested...

...and what is the problem

Applications in
• transport (LMI): limits from peaton models to fluid models

• statistics, machine learning: distributions, representation of images
• mean field games: interaction of populations

How to compute the distance between to measures?

With the total variation

|µ− ν|TV = sup
A∈ countable measurable

partitions of Ω

∑
A∈A

|µ(A)− ν(A)| ,

we would have |δ0 − δt|TV = 2 regardless of how close t is to 0. Not physical.
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Definition of measures The Wasserstein space Curves Hodge decomposition

Introducing the Wasserstein distance

Let µ, ν ∈ P(Ω) be two probability measures,

and denote
the set of transport plans by

Γ(µ, ν) :=
{
η ∈ P((Ω)2)

∣∣ πx#η = µ, πy#η = ν
}
,

the squared Wasserstein distance by

d2W(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)

|x− y|2 dη(x, y).

Def 2 – [San15] We call Wasserstein space the set P2(Ω) or measures µ such that
dW(µ, δ0) is finite, endowed with the distance dW .

Averil Prost Measures are fun April 2nd, 2024 LITIS doctoral seminar 6 / 15



Definition of measures The Wasserstein space Curves Hodge decomposition

Introducing the Wasserstein distance

Let µ, ν ∈ P(Ω) be two probability measures, and denote
the set of transport plans by

Γ(µ, ν) :=
{
η ∈ P((Ω)2)

∣∣ πx#η = µ, πy#η = ν
}
,

the squared Wasserstein distance by

d2W(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)

|x− y|2 dη(x, y).

Def 2 – [San15] We call Wasserstein space the set P2(Ω) or measures µ such that
dW(µ, δ0) is finite, endowed with the distance dW .

Averil Prost Measures are fun April 2nd, 2024 LITIS doctoral seminar 6 / 15



Definition of measures The Wasserstein space Curves Hodge decomposition

Introducing the Wasserstein distance

Let µ, ν ∈ P(Ω) be two probability measures, and denote
the set of transport plans by

Γ(µ, ν) :=
{
η ∈ P((Ω)2)

∣∣ πx#η = µ, πy#η = ν
}
,

the squared Wasserstein distance by

d2W(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)

|x− y|2 dη(x, y).

Def 2 – [San15] We call Wasserstein space the set P2(Ω) or measures µ such that
dW(µ, δ0) is finite, endowed with the distance dW .

Averil Prost Measures are fun April 2nd, 2024 LITIS doctoral seminar 6 / 15



Definition of measures The Wasserstein space Curves Hodge decomposition

Introducing the Wasserstein distance

Let µ, ν ∈ P(Ω) be two probability measures, and denote
the set of transport plans by

Γ(µ, ν) :=
{
η ∈ P((Ω)2)

∣∣ πx#η = µ, πy#η = ν
}
,

the squared Wasserstein distance by

d2W(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)

|x− y|2 dη(x, y).

Def 2 – [San15] We call Wasserstein space the set P2(Ω) or measures µ such that
dW(µ, δ0) is finite, endowed with the distance dW .

Averil Prost Measures are fun April 2nd, 2024 LITIS doctoral seminar 6 / 15



Definition of measures The Wasserstein space Curves Hodge decomposition

Introducing the Wasserstein distance

Let µ, ν ∈ P(Ω) be two probability measures, and denote
the set of transport plans by

Γ(µ, ν) :=
{
η ∈ P((Ω)2)

∣∣ πx#η = µ, πy#η = ν
}
,

the squared Wasserstein distance by

d2W(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)

|x− y|2 dη(x, y).

Def 2 – [San15] We call Wasserstein space the set P2(Ω) or measures µ such that
dW(µ, δ0) is finite, endowed with the distance dW .

Averil Prost Measures are fun April 2nd, 2024 LITIS doctoral seminar 6 / 15



Definition of measures The Wasserstein space Curves Hodge decomposition

Introducing the Wasserstein distance

Let µ, ν ∈ P(Ω) be two probability measures, and denote
the set of transport plans by

Γ(µ, ν) :=
{
η ∈ P((Ω)2)

∣∣ πx#η = µ, πy#η = ν
}
,

the squared Wasserstein distance by

d2W(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)

|x− y|2 dη(x, y).

Def 2 – [San15] We call Wasserstein space the set P2(Ω) or measures µ such that
dW(µ, δ0) is finite, endowed with the distance dW .

Averil Prost Measures are fun April 2nd, 2024 LITIS doctoral seminar 6 / 15



Definition of measures The Wasserstein space Curves Hodge decomposition

Introducing the Wasserstein distance

Let µ, ν ∈ P(Ω) be two probability measures, and denote
the set of transport plans by

Γ(µ, ν) :=
{
η ∈ P((Ω)2)

∣∣ πx#η = µ, πy#η = ν
}
,

the squared Wasserstein distance by

d2W(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)

|x− y|2 dη(x, y).

Def 2 – [San15] We call Wasserstein space the set P2(Ω) or measures µ such that
dW(µ, δ0) is finite, endowed with the distance dW .

Averil Prost Measures are fun April 2nd, 2024 LITIS doctoral seminar 6 / 15



Definition of measures The Wasserstein space Curves Hodge decomposition

What does it look like

The Wasserstein space is
• a metric space, that is complete.

• Infinite-dimensional. If Ω is compact, then
P2(Ω) is compact too: otherwise, not even
locally compact.

• Geodesic: between any couple
(µ0, µ1) ∈ (P2(Ω))

2, there exists at least one
curve s 7→ µs such that

dW(µs, µt) = |s− t| dW(µ0, µ1).
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Definition of measures The Wasserstein space Curves Hodge decomposition

Application: continuity equations

Def 3 – Fokker-Planck equation Given an initial measure ν ∈ P2(Ω), find a curve
(µt)t∈[0,T ] that satisfies µ0 = ν and solves in the sense of distributions v

∂tµt + div (f(t, x, µt)#µt) = 0 ∀t ∈ (0, T ). (1)

Averil Prost Measures are fun April 2nd, 2024 LITIS doctoral seminar 9 / 15
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The Cauchy-Lipschitz framework

Theorem 1 – Well-posedness [BF23] Assume that f : [0, T ]× Ω× P2(Ω) → Rd is
bounded and Lipschitz-continuous in all its variables (with respect to dW for the measure
variable). Then there exists an unique solution to (1), that is given by

µt = Φµ
t #ν, where

d

dt
Φµ
t (x) = f (t,Φµ

t (x), µt) and Φµ
0 (x) = x.

For instance,

f(t, x, µ) := g(t, x) +

∫
y∈Ω

φ(t, x, y)dµ(y)

where g : [0, T ]× Ω → Rd and φ ∈ Cc([0, T ]× Ω× Ω;Rd) are Lipschitz in all variables.

Averil Prost Measures are fun April 2nd, 2024 LITIS doctoral seminar 10 / 15
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Example (1/2)

Consider the vector field f given by f(x) = 1 is x < 0, and f(x) = 0 if x ⩾ 0.

Let ν = L[−1,0]

the Lebesgue measure on the segment, and define

µt = L[(−1+t)+,0] +min(t, 1)δ0.

On the one hand, for any φ ∈ C1
c (R;R), there holds∫

x∈R
⟨∇φ(x), f(x)⟩ dµt(x) =

∫ 0

x=(−1+t)+

φ′(x)dx =

{
φ(0)− φ(−1 + t) if t ∈ [0, 1),

0 t ⩾ 1.

Averil Prost Measures are fun April 2nd, 2024 LITIS doctoral seminar 11 / 15
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the Lebesgue measure on the segment, and define

µt = L[(−1+t)+,0] +min(t, 1)δ0.

On the one hand, for any φ ∈ C1
c (R;R), there holds∫

x∈R
⟨∇φ(x), f(x)⟩ dµt(x) =

∫ 0

x=(−1+t)+

φ′(x)dx

=

{
φ(0)− φ(−1 + t) if t ∈ [0, 1),

0 t ⩾ 1.
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Example (2/2)

On the other hand,∫
x∈Ω

φ(x)dµt(x) = min(t, 1)φ(0) +

∫ 0

s=(−1+t)+

φ(x)dx,

thus

∂t

∫
x∈Ω

φ(x)dµt(x) =

{
φ(0)− φ(−1 + t) t ∈ [0, 1),

0 t ⩾ 1.

Equality holds, and (µt)t∈[0,T ] is a solution of the continuity equation.

• Not in L1 nor in any Lp!
• Here f is not Lipschitz-continuous, actually no available theory in this case.
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The Hodge-Helmholtz decomposition

Theorem 2 – HH decomposition [Lad87] Let f ∈ L2(Rd;Rd). There exists two
uniquely defined vector fields g, h ∈ L2(Rd;Rd) such that

f = g + h, g ≃ ∇φ, div (h) ≃ 0. (2)

= +
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What would it be for any measure?

Fundamental property of divergence-free fields:
their flow let the Lebesgue measure invariant.

This can be extended to any measure, and to fields that
put different probability over different directions.

Theorem 3 – Hodge decomposition Any field
ξ ∈ P2(TΩ) decomposes in a “tangent” compo-
nent akin to a gradient, and a “divergence-free”
component.
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Thank you!
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