Measures are fun

Introduction to the Wasserstein distance and its geometry

Averil Prost (LMI, INSA Rouen Normandie)

April 2nd, 2024 LITIS doctoral seminar

INSA

Definition of measures ●00	The Wasserstein space	Curves 00000	Hodge decomposition

Table of Contents

Definition of measures

The Wasserstein space

Curves

Hodge decomposition

Definition of measures ○●○	The Wasserstein space	Curves 00000	Hodge decomposition
What is a measure			

An object modelling the presence of mass.

• continuous: fluids, earth, light... Typically the Lebesgue measure.

Definition of measures ○●○	The Wasserstein space	Curves 00000	Hodge decomposition

What is a measure

An object modelling the presence of mass.

- continuous: fluids, earth, light... Typically the Lebesgue measure.
- discrete: people, histograms, money... Typically Dirac masses.

Definition of measures ○●○	The Wasserstein space	Curves 00000	Hodge decomposition

What is a measure

An object modelling the presence of mass.

- continuous: fluids, earth, light... Typically the Lebesgue measure.
- discrete: people, histograms, money... Typically Dirac masses.

Def 1 – Probability measure Let $(\Omega; \Sigma)$ be a measurable space. A probability measure μ is an application from Σ to [0, 1]such that $\mu(\Omega) = 1$ and for any disjoint sequence $(A_i)_{i \in \mathbb{N}}$,

$$\mu\bigg(\bigsqcup_{i\in\mathbb{N}}A_i\bigg)=\sum_{i\in\mathbb{N}}\mu(A_i).$$

Definition of measures ○○●	The Wasserstein space	Curves 00000	Hodge decomposition
Why are we interested			

Applications in

• transport (LMI): limits from peaton models to fluid models

Definition of measures ○○●	The Wasserstein space	Curves 00000	Hodge decomposition
Why are we interested			

Applications in

- transport (LMI): limits from peaton models to fluid models
- statistics, machine learning: distributions, representation of images

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
○○●	000	00000	

Why are we interested...

Applications in

- transport (LMI): limits from peaton models to fluid models
- statistics, machine learning: distributions, representation of images
- mean field games: interaction of populations

Definition of measures ००●	The Wasserstein space	Curves 00000	Hodge decomposition

Why are we interested...

...and what is the problem

Applications in

- transport (LMI): limits from peaton models to fluid models
- statistics, machine learning: distributions, representation of images
- mean field games: interaction of populations

How to compute the distance between to measures?

Definition of measures ००●	The Wasserstein space	Curves 00000	Hodge decomposition
Why are we interested		and what	t is the problem

Applications in

- transport (LMI): limits from peaton models to fluid models
- statistics, machine learning: distributions, representation of images
- mean field games: interaction of populations

How to compute the distance between to measures?

With the total variation

$$\left|\mu - \nu\right|_{\mathsf{TV}} = \sup_{\substack{\mathcal{A} \in \text{ countable measurable} \\ \text{partitions of } \Omega}} \sum_{A \in \mathcal{A}} \left|\mu(A) - \nu(A)\right|,$$

we would have $|\delta_0 - \delta_t|_{\mathsf{TV}} = 2$ regardless of how close t is to 0.

Averil Prost

Definition of measures ००●	The Wasserstein space	Curves 00000	Hodge decomposition
Why are we interested		and what	t is the problem

Applications in

- transport (LMI): limits from peaton models to fluid models
- statistics, machine learning: distributions, representation of images
- mean field games: interaction of populations

How to compute the distance between to measures?

With the total variation

$$|\mu - \nu|_{\mathsf{TV}} = \sup_{\substack{\mathcal{A} \in \text{ countable measurable} \\ \text{partitions of } \Omega}} \sum_{A \in \mathcal{A}} |\mu(A) - \nu(A)| \,,$$

we would have $|\delta_0 - \delta_t|_{TV} = 2$ regardless of how close t is to 0. Not physical.

Averil Prost

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
000	●○○	00000	

Table of Contents

Definition of measures

The Wasserstein space

Curves

Hodge decomposition

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
000	○●○	00000	

Let $\mu, \nu \in \mathscr{P}(\Omega)$ be two probability measures,

Definition of measures	The Wasserstein space ○●○	Curves 00000	Hodge decomposition

$$\Gamma(\mu,\nu) \coloneqq \left\{ \eta \in \mathscr{P}((\Omega)^2) \mid \pi_x \# \eta = \mu, \ \pi_y \# \eta = \nu \right\},\$$

Definition of measures	The Wasserstein space ○●○	Curves 00000	Hodge decomposition

$$\Gamma(\mu,\nu) \coloneqq \left\{ \eta \in \mathscr{P}((\Omega)^2) \mid \pi_x \# \eta = \mu, \ \pi_y \# \eta = \nu \right\},\$$

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
000	○●○	00000	

$$\Gamma(\mu,\nu) \coloneqq \left\{ \eta \in \mathscr{P}((\Omega)^2) \mid \pi_x \# \eta = \mu, \ \pi_y \# \eta = \nu \right\},\$$

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
000	○●○	00000	

$$\Gamma(\mu,\nu) \coloneqq \left\{ \eta \in \mathscr{P}((\Omega)^2) \mid \pi_x \# \eta = \mu, \ \pi_y \# \eta = \nu \right\},\$$

Definition of measures	The Wasserstein space ○●○	Curves 00000	Hodge decomposition

Let $\mu,\nu\in \mathscr{P}(\Omega)$ be two probability measures, and denote the set of transport plans by

$$\Gamma(\mu,\nu) \coloneqq \left\{ \eta \in \mathscr{P}((\Omega)^2) \mid \pi_x \# \eta = \mu, \ \pi_y \# \eta = \nu \right\},\$$

the squared Wasserstein distance by

$$d_{\mathcal{W}}^2(\mu,\nu) \coloneqq \inf_{\eta \in \Gamma(\mu,\nu)} \int_{(x,y)} |x-y|^2 \, d\eta(x,y).$$

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
000	○●○	00000	

Let $\mu,\nu\in \mathscr{P}(\Omega)$ be two probability measures, and denote the set of transport plans by

$$\Gamma(\mu,\nu) \coloneqq \left\{ \eta \in \mathscr{P}((\Omega)^2) \mid \pi_x \# \eta = \mu, \ \pi_y \# \eta = \nu \right\},\$$

the squared Wasserstein distance by

$$d_{\mathcal{W}}^2(\mu,\nu) \coloneqq \inf_{\eta \in \Gamma(\mu,\nu)} \int_{(x,y)} |x-y|^2 \, d\eta(x,y).$$

Def 2 – **[San15]** We call **Wasserstein space** the set $\mathscr{P}_2(\Omega)$ or measures μ such that $d_{\mathcal{W}}(\mu, \delta_0)$ is finite, endowed with the distance $d_{\mathcal{W}}$.

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
000	○○●	00000	

The Wasserstein space is

• a metric space, that is complete.

Definition of measures	The Wasserstein space ○○●	Curves 00000	Hodge decomposition

- a metric space, that is complete.
- Infinite-dimensional. If Ω is compact, then $\mathscr{P}_2(\Omega)$ is compact too: otherwise, not even locally compact.

- a metric space, that is complete.
- Infinite-dimensional. If Ω is compact, then $\mathscr{P}_2(\Omega)$ is compact too: otherwise, not even locally compact.
- Geodesic: between any couple $(\mu_0, \mu_1) \in (\mathscr{P}_2(\Omega))^2$, there exists *at least* one curve $s \mapsto \mu_s$ such that

$$d_{\mathcal{W}}(\mu_s, \mu_t) = |s - t| d_{\mathcal{W}}(\mu_0, \mu_1).$$

- a metric space, that is complete.
- Infinite-dimensional. If Ω is compact, then $\mathscr{P}_2(\Omega)$ is compact too: otherwise, not even locally compact.
- Geodesic: between any couple $(\mu_0, \mu_1) \in (\mathscr{P}_2(\Omega))^2$, there exists *at least* one curve $s \mapsto \mu_s$ such that

$$d_{\mathcal{W}}(\mu_s, \mu_t) = |s - t| d_{\mathcal{W}}(\mu_0, \mu_1).$$

- a metric space, that is complete.
- Infinite-dimensional. If Ω is compact, then $\mathscr{P}_2(\Omega)$ is compact too: otherwise, not even locally compact.
- Geodesic: between any couple $(\mu_0, \mu_1) \in (\mathscr{P}_2(\Omega))^2$, there exists *at least* one curve $s \mapsto \mu_s$ such that

$$d_{\mathcal{W}}(\mu_s, \mu_t) = |s - t| d_{\mathcal{W}}(\mu_0, \mu_1).$$

- a metric space, that is complete.
- Infinite-dimensional. If Ω is compact, then $\mathscr{P}_2(\Omega)$ is compact too: otherwise, not even locally compact.
- Geodesic: between any couple $(\mu_0, \mu_1) \in (\mathscr{P}_2(\Omega))^2$, there exists *at least* one curve $s \mapsto \mu_s$ such that

$$d_{\mathcal{W}}(\mu_s, \mu_t) = |s - t| d_{\mathcal{W}}(\mu_0, \mu_1).$$

- a metric space, that is complete.
- Infinite-dimensional. If Ω is compact, then $\mathscr{P}_2(\Omega)$ is compact too: otherwise, not even locally compact.
- Geodesic: between any couple $(\mu_0, \mu_1) \in (\mathscr{P}_2(\Omega))^2$, there exists *at least* one curve $s \mapsto \mu_s$ such that

$$d_{\mathcal{W}}(\mu_s, \mu_t) = |s - t| d_{\mathcal{W}}(\mu_0, \mu_1).$$

- a metric space, that is complete.
- Infinite-dimensional. If Ω is compact, then $\mathscr{P}_2(\Omega)$ is compact too: otherwise, not even locally compact.
- Geodesic: between any couple $(\mu_0, \mu_1) \in (\mathscr{P}_2(\Omega))^2$, there exists *at least* one curve $s \mapsto \mu_s$ such that

$$d_{\mathcal{W}}(\mu_s, \mu_t) = |s - t| d_{\mathcal{W}}(\mu_0, \mu_1).$$

- a metric space, that is complete.
- Infinite-dimensional. If Ω is compact, then $\mathscr{P}_2(\Omega)$ is compact too: otherwise, not even locally compact.
- Geodesic: between any couple $(\mu_0, \mu_1) \in (\mathscr{P}_2(\Omega))^2$, there exists *at least* one curve $s \mapsto \mu_s$ such that

$$d_{\mathcal{W}}(\mu_s, \mu_t) = |s - t| d_{\mathcal{W}}(\mu_0, \mu_1).$$

- a metric space, that is complete.
- Infinite-dimensional. If Ω is compact, then $\mathscr{P}_2(\Omega)$ is compact too: otherwise, not even locally compact.
- Geodesic: between any couple $(\mu_0, \mu_1) \in (\mathscr{P}_2(\Omega))^2$, there exists *at least* one curve $s \mapsto \mu_s$ such that

$$d_{\mathcal{W}}(\mu_s, \mu_t) = |s - t| d_{\mathcal{W}}(\mu_0, \mu_1).$$

Definition of measures 000	The Wasserstein space	Curves •0000	Hodge decomposition

Table of Contents

Definition of measures

The Wasserstein space

Curves

Hodge decomposition

Definition of measures	The Wasserstein space	Curves 0000	Hodge decomposition

Application: continuity equations

Def 3 – Fokker-Planck equation Given an initial measure $\nu \in \mathscr{P}_2(\Omega)$, find a curve $(\mu_t)_{t \in [0,T]}$ that satisfies $\mu_0 = \nu$ and solves in the sense of distributions \checkmark

$$\partial_t \mu_t + \operatorname{div} \left(f(t, x, \mu_t) \# \mu_t \right) = 0 \quad \forall t \in (0, T).$$
(1)

Definition of measures	The Wasserstein space	Curves 0000	Hodge decomposition

Application: continuity equations

Def 3 – Fokker-Planck equation Given an initial measure $\nu \in \mathscr{P}_2(\Omega)$, find a curve $(\mu_t)_{t \in [0,T]}$ that satisfies $\mu_0 = \nu$ and solves in the sense of distributions \checkmark

$$\partial_t \mu_t + \operatorname{div} \left(f(t, x, \mu_t) \# \mu_t \right) = 0 \quad \forall t \in (0, T).$$
(1)

Definition of measures 000	The Wasserstein space	Curves oo●oo	Hodge decomposition

The Cauchy-Lipschitz framework

Theorem 1 – Well-posedness [BF23] Assume that $f: [0,T] \times \Omega \times \mathscr{P}_2(\Omega) \to \mathbb{R}^d$ is bounded and Lipschitz-continuous in all its variables (with respect to $d_{\mathcal{W}}$ for the measure variable). Then there exists an unique solution to (1), that is given by

$$\mu_t = \Phi^{\mu}_t \# \nu, \quad \text{where} \quad \frac{d}{dt} \Phi^{\mu}_t(x) = f\left(t, \Phi^{\mu}_t(x), \mu_t\right) \quad \text{and} \quad \Phi^{\mu}_0(x) = x$$

Definition of measures 000	The Wasserstein space	Curves 00●00	Hodge decomposition

The Cauchy-Lipschitz framework

Theorem 1 – Well-posedness [BF23] Assume that $f : [0,T] \times \Omega \times \mathscr{P}_2(\Omega) \to \mathbb{R}^d$ is bounded and Lipschitz-continuous in all its variables (with respect to $d_{\mathcal{W}}$ for the measure variable). Then there exists an unique solution to (1), that is given by

$$\mu_t = \Phi^{\mu}_t \#
u$$
, where $\frac{d}{dt} \Phi^{\mu}_t(x) = f(t, \Phi^{\mu}_t(x), \mu_t)$ and $\Phi^{\mu}_0(x) = x$.

For instance,

$$f(t,x,\mu)\coloneqq g(t,x) + \int_{y\in\Omega}\varphi(t,x,y)d\mu(y)$$

where $g: [0,T] \times \Omega \to \mathbb{R}^d$ and $\varphi \in \mathcal{C}_c([0,T] \times \Omega \times \Omega; \mathbb{R}^d)$ are Lipschitz in all variables.

Definition of measures	The Wasserstein space	Curves 000●0	Hodge decomposition
Example (1/2)			

Consider the vector field f given by f(x) = 1 is x < 0, and f(x) = 0 if $x \ge 0$.

Definition of measures 000	The Wasserstein space	Curves 000●0	Hodge decomposition
Example (1/2)			

$$\mu_t = \mathcal{L}_{[(-1+t)+,0]} + \min(t,1)\delta_0.$$

Definition of measures 000	The Wasserstein space	Curves 000●0	Hodge decomposition
Example (1/2)			

$$\mu_t = \mathcal{L}_{[(-1+t)+,0]} + \min(t,1)\delta_0.$$

Definition of measures 000	The Wasserstein space	Curves 000●0	Hodge decomposition
Example (1/2)			

$$\mu_t = \mathcal{L}_{[(-1+t)+,0]} + \min(t,1)\delta_0.$$

Definition of measures 000	The Wasserstein space	Curves 000●0	Hodge decomposition
Example (1/2)			

$$\mu_t = \mathcal{L}_{[(-1+t)+,0]} + \min(t,1)\delta_0.$$

Definition of measures	The Wasserstein space 000	Curves 000●0	Hodge decomposition
Example (1/2)			

$$\mu_t = \mathcal{L}_{[(-1+t)+,0]} + \min(t,1)\delta_0.$$

Definition of measures 000	The Wasserstein space	Curves 000●0	Hodge decomposition
Example (1/2)			

$$\mu_t = \mathcal{L}_{[(-1+t)+,0]} + \min(t,1)\delta_0.$$

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
000	000	000●0	
Example (1/2)			

$$\mu_t = \mathcal{L}_{[(-1+t)+,0]} + \min(t,1)\delta_0.$$

$$\int_{x\in\mathbb{R}}\left\langle \nabla\varphi(x),f(x)\right\rangle d\mu_t(x)$$

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
000	000	000●0	
Example (1/2)			

$$\mu_t = \mathcal{L}_{[(-1+t)_+,0]} + \min(t,1)\delta_0.$$

$$\int_{x \in \mathbb{R}} \left\langle \nabla \varphi(x), f(x) \right\rangle d\mu_t(x) = \int_{x = (-1+t)_+}^0 \varphi'(x) dx$$

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
000	000	000●0	
Example (1/2)			

$$\mu_t = \mathcal{L}_{[(-1+t)_+,0]} + \min(t,1)\delta_0.$$

$$\int_{x\in\mathbb{R}} \left\langle \nabla\varphi(x), f(x) \right\rangle d\mu_t(x) = \int_{x=(-1+t)_+}^0 \varphi'(x) dx = \begin{cases} \varphi(0) - \varphi(-1+t) & \text{if } t\in[0,1), \\ 0 & t \ge 1. \end{cases}$$

Definition of measures	The Wasserstein space	Curves 0000●	Hodge decomposition
Example (2/2)			

$$\int_{x\in\Omega}\varphi(x)d\mu_t(x) = \min(t,1)\varphi(0) + \int_{s=(-1+t)_+}^0\varphi(x)dx,$$

Definition of measures 000	The Wasserstein space	Curves 0000●	Hodge decomposition
Example (2/2)			

$$\int_{x\in\Omega}\varphi(x)d\mu_t(x) = \min(t,1)\varphi(0) + \int_{s=(-1+t)_+}^0\varphi(x)dx,$$

thus

$$\partial_t \int_{x \in \Omega} \varphi(x) d\mu_t(x) = \begin{cases} \varphi(0) - \varphi(-1+t) & t \in [0,1), \\ 0 & t \ge 1. \end{cases}$$

Definition of measures	The Wasserstein space	Curves 0000●	Hodge decomposition
Example (2/2)			

$$\int_{x\in\Omega}\varphi(x)d\mu_t(x) = \min(t,1)\varphi(0) + \int_{s=(-1+t)_+}^0\varphi(x)dx,$$

thus

$$\partial_t \int_{x \in \Omega} \varphi(x) d\mu_t(x) = \begin{cases} \varphi(0) - \varphi(-1+t) & t \in [0,1), \\ 0 & t \ge 1. \end{cases}$$

Equality holds, and $(\mu_t)_{t \in [0,T]}$ is a solution of the continuity equation.

Definition of measures 000	The Wasserstein space	Curves 0000●	Hodge decomposition
Example (2/2)			

$$\int_{x\in\Omega}\varphi(x)d\mu_t(x) = \min(t,1)\varphi(0) + \int_{s=(-1+t)_+}^0\varphi(x)dx,$$

thus

$$\partial_t \int_{x \in \Omega} \varphi(x) d\mu_t(x) = \begin{cases} \varphi(0) - \varphi(-1+t) & t \in [0,1), \\ 0 & t \ge 1. \end{cases}$$

Equality holds, and $(\mu_t)_{t \in [0,T]}$ is a solution of the continuity equation.

• Not in L^1 nor in any $L^p!$

Definition of measures 000	The Wasserstein space	Curves 0000●	Hodge decomposition
Example (2/2)			

$$\int_{x\in\Omega}\varphi(x)d\mu_t(x)=\min(t,1)\varphi(0)+\int_{s=(-1+t)_+}^0\varphi(x)dx,$$

thus

$$\partial_t \int_{x \in \Omega} \varphi(x) d\mu_t(x) = \begin{cases} \varphi(0) - \varphi(-1+t) & t \in [0,1), \\ 0 & t \ge 1. \end{cases}$$

Equality holds, and $(\mu_t)_{t \in [0,T]}$ is a solution of the continuity equation.

- Not in L^1 nor in any L^p !
- $\bullet\,$ Here f is not Lipschitz-continuous, actually no available theory in this case.

Averil Prost

Definition of measures	The Wasserstein space	Curves	Hodge decomposition
000		00000	●00

Table of Contents

Definition of measures

The Wasserstein space

Curves

Hodge decomposition

Definition of measures	The Wasserstein space	Curves 00000	Hodge decomposition ○●○

The Hodge-Helmholtz decomposition

Theorem 2 – HH decomposition [Lad87] Let $f \in L^2(\mathbb{R}^d; \mathbb{R}^d)$. There exists two uniquely defined vector fields $g, h \in L^2(\mathbb{R}^d; \mathbb{R}^d)$ such that

$$f = g + h, \qquad g \simeq \nabla \varphi, \qquad \operatorname{div}(h) \simeq 0.$$
 (2)

Definition of measures	The Wasserstein space	Curves 00000	Hodge decomposition ○●○

The Hodge-Helmholtz decomposition

Theorem 2 – HH decomposition [Lad87] Let $f \in L^2(\mathbb{R}^d; \mathbb{R}^d)$. There exists two uniquely defined vector fields $g, h \in L^2(\mathbb{R}^d; \mathbb{R}^d)$ such that

$$f = g + h, \qquad g \simeq \nabla \varphi, \qquad \operatorname{div}(h) \simeq 0.$$
 (2)

Definition of measures	The Wasserstein space	Curves 00000	Hodge decomposition

What would it be for any measure?

Fundamental property of divergence-free fields: their flow let the Lebesgue measure invariant.

What would it be for any measure?

Fundamental property of divergence-free fields: their flow let the Lebesgue measure invariant.

This can be extended to any measure, and to fields that put different probability over different directions.

Curves

What would it be for any measure?

Fundamental property of divergence-free fields: their flow let the Lebesgue measure invariant.

This can be extended to any measure, and to fields that put different probability over different directions.

Theorem 3 – Hodge decomposition Any field $\xi \in \mathscr{P}_2(T\Omega)$ decomposes in a "tangent" component akin to a gradient, and a "divergence-free" component.

Definition of measures 000	The Wasserstein space	Curves 00000	Hodge decomposition

Thank you!

[BF23] Benoît Bonnet and Hélène Frankowska.

Caratheodory Theory and A Priori Estimates for Continuity Inclusions in the Space of Probability Measures, May 2023.

Preprint (arXiv:2302.00963).

[Lad87] Ol'ga A. Ladyženskaja. The Mathematical Theory of Viscous Incompressible Flow. Number 2 in Mathematics and Its Applications. Gordon and Breach, 1987.

[San15] Filippo Santambrogio.

Optimal Transport for Applied Mathematicians, volume 87 of Progress in Nonlinear Differential Equations and Their Applications. Springer International Publishing, Cham, 2015.