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The original principle What since An application

History (1/2)

1974 Ivar Ekeland’s On the variational principle [Eke74], metric, distances.
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The original principle What since An application

Theorem – Ekeland [Eke74] Let (X, d) be a complete metric space. Let f : X 7→
R∪ {∞} be proper, lsc and lower bounded.

Let x ∈ dom (f), δ > 0. Then ∃ y ∈ X s.t.

v

{
f(y) ⩽ f(x)− δd(x, y),

f(y)− δd(z, y) < f(z) ∀z ∈ X \ {y}.

(1a)
(1b)

l No min when it exists
m δ is arbitrary
m y stays in X

m ∼ no +∞ behavior
m No (local) compactness
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The original principle What since An application

The proof (1/3)

Let S0 := dom f , and ε > 0.

Pick x0 ∈ S0 such that f(x0) ⩽ infX f + ε. Build (xi, Si)i as

Si := {x ∈ X | f(x) ⩽ f(xi−1)− δd(x, xi−1)} ,

δd(x, xi−1) ⩽ f(xi−1)− f(x) v

and pick xi ∈ Si such that

f(xi) ⩽
f(xi−1) + infy∈Si f(y)

2
.

Si nonempty and closed.
Let us show that Si+1 ⊂ Si, and diamSi −→

i→∞
0.
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The original principle What since An application

The proof (2/3)

Let x ∈ Si+1:

f(x) ⩽
x∈Si+1

f(xi)− δd(x, xi)

⩽
xi∈Si

f(xi−1)− δ [d(xi, xi−1) + d(x, xi)]

⩽
△ ineq

f(xi−1)− δd(x, xi−1),

and x ∈ Si, so that Si+1 ⊂ Si.

On the other hand, since infSi+1 f ⩾ infSi f ,

f(xi)− inf
Si+1

f ⩽ [f(xi−1) + inf
Si

f − 2 inf
Si+1

f ]/2

⩽ [f(xi−1)− inf
Si

f ]/2 ⩽ · · · ⩽ ε

2i
.

δd(x, xi) ⩽ f(xi)− f(x) ⩽ f(xi)− inf
Si+1

f ⩽
ε

2i
.

so that d(x, xi−1) ⩽ ε
δ2i

, and diamSi −→
i→∞

0.

Def Since X is closed, by Cantor’s intersection theorem, there exists an unique
y ∈

⋂∞
i=0 Si.
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The original principle What since An application

The proof (3/3)

• Since y ∈ S1, f(y) ⩽ f(x0)− δd(y, x0), hence (1a).

• Let x ̸= y, and i ∈ N s.t. x /∈ Si+1.

f(x) >
x/∈Si+1

f(xi)− δd(x, xi)

⩾
y∈Si+1

f(y) + δd(y, xi)− δd(x, xi),

⩾
△ ineq.

f(y)− δd(y, x),

hence (1b). □
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The original principle What since An application

History (2/2)

1974 Ivar Ekeland’s On the variational principle [Eke74], metric, distances.

1976 Ekeland and Lebourg [EL76], Banach, linear functions.

1984 [pub] Aubin and Ekeland Applied Nonlinear Analysis [AE84], excellent.

1987 Borwein-Preiss A smooth variational principle [. . . ] [BP87], Banach, "gauge-type".

1993 Deville, Godefroy, Zizler A smooth variational principle [. . . ] [DGZ93], Banach, bumps.

2005 Borwein and Zhu Techniques of Variational Analysis [BZ05], metric, "gauge-type".
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The original principle What since An application

The Hilbertian Ekeland principle

Theorem – Ekeland-Lebourg [EL76] Let a closed bounded D ⊂ H real Hilbert, and
f : D 7→ R ∪ {∞} be proper, lsc and lower bounded.

∀ δ > 0, ∃x ∈ D and p ∈ H ′ s.t.{
|p|H′ < δ,

x → f(x) + ⟨p, x⟩H′,H admits a strict minimum over D in x.

(2a)
(2b)

l Boundedness of D
really essential (f ≡ c)

m Very nice perturbation

The proof is quite different.
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The original principle What since An application

The smooth Ekeland principle

Let (X, d) be a complete metric space.

Def – gauge-type functions Any lower semicontinuous ρ : X×X 7→ [0,∞] satisfying
ρ(x, x) = 0 for all x ∈ X, and ∀ε > 0, ∃η > 0 such that ρ(x, y) ⩽ η implies d(x, y) ⩽ ε.

Theorem – Borwein-Preiss [BP87] Let f : X 7→ R ∪ {∞} be proper, lsc and lower
bounded.

Let ρ be gauge-type, (δi)i ⊂ R+
∗ , and x0 ∈ X such that f(x0) ⩽ infX f + ε.

Then there exist y ∈ X and a sequence (xi)
∞
i=0 ⊂ X such that

ρ(x0, y) ⩽ ε/δ0 and ρ(xi, y) ⩽ ε/(2iδ0)

f(y) + Σ∞
i=0 δiρ(y, xi) ⩽ f(x0)

f(x) + Σ∞
i=0 δiρ(x, xi) > f(y) + Σ∞

i=0 δiρ(y, xi) ∀x ∈ X \ {y}.

(3a)
(3b)
(3c)
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The original principle What since An application

Illustration of Borwein-Preiss

Figure: Iterative construction with f(x) = (1 + |x|)−1, δi = 0.01/(1 + i)2, ρ(x, y) = |x− y|2.
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The original principle What since An application

Viscosity (I’m sure you missed it)

The Wasserstein context
• Space of measures µ with finite second moment

∫
x∈E |x|2 dµ(x).

• Narrow topology: duality with Cb(E).
• Wasserstein topology: duality with C2(E).

The problem
• Aim: minimize a (coercive, lsc, proper) function in the Wasserstein space.
• Bounded sets for the Wasserstein distance are narrowly compact, but not compact in the

Wasserstein topology.
A solution by Marigonda & Quincampoix [MQ18]

• Use Ekeland to obtain δ−minimizers that are exact strict minima of perturbed functions.
• What with Borwein & Preiss?
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The original principle What since An application

Thank you!
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