Ekeland

A beginner's point of view on some variational principles

Averil Prost

January 10, 2023 LMI/LMRS doctoral seminar

The original principle ●○○○○○	What since 00000	An application

Table of Contents

The original principle History Statement

The proof

What since

History Hilbert version: Ekeland-Lebourg Smooth version: Borwein-Preiss

An application

The original ○●○○○○	principle	What since 00000	An application
History	y (1/2)		
1974	Ivar Ekeland's On the variational p	rinciple [Eke74], metric, distances.	
Ļ			

Averil Prost

Ekeland

Averil Prost

The original principle
$$\infty \bullet \infty \infty$$
Multiple accord
 $\infty \otimes \infty \infty$ An application
 $\infty \otimes \infty \infty$ Theorem - Ekeland [Eke74]
 $\mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let $x \in \text{dom}(f), \delta > 0$. Then $\exists y \in X$ s.t. $\mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let $x \in \text{dom}(f), \delta > 0$. Then $\exists y \in X$ s.t. \checkmark $\begin{cases} f(y) \leq f(x) - \delta d(x, y), & (1a) \\ f(y) - \delta d(z, y) < f(z) & \forall z \in X \setminus \{y\}. & (1b) \end{cases}$

The original principleWhat since
00000An application
0000Theorem - Ekeland [Eke74]Let
$$(X, d)$$
 be a complete metric space. Let $f : X \mapsto$ $\mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let $x \in \text{dom}(f), \delta > 0$. Then $\exists y \in X$ s.t. \checkmark $\begin{cases} f(y) \leq f(x) - \delta d(x, y), & (1a) \\ f(y) - \delta d(z, y) < f(z) & \forall z \in X \setminus \{y\}. & (1b) \end{cases}$ \checkmark \checkmark $\overset{5}{4}$ $\overset{6}{4}$ $\overset{5}{4}$ $\overset{6}{4}$ $\overset{5}{4}$ $\overset{6}{4}$ $\overset{7}{4}$ $\overset{6}{4}$ $\overset{7}{4}$ $\overset{6}{4}$ $\overset{6}{4}$ $\overset{6}{4}$ $\overset{6}{4}$ $\overset{6}{4}$ $\overset{6}{4}$

The original principle
$$\infty \in \infty \infty$$
What since
 $\infty \in \infty \infty$ An application
 $\infty \in \infty \infty$ Theorem - Ekeland [Eke74]
 $\mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let $x \in \text{dom}(f), \delta > 0$. Then $\exists y \in X$ s.t. $\mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let $x \in \text{dom}(f), \delta > 0$. Then $\exists y \in X$ s.t. \checkmark $\begin{cases} f(y) \leq f(x) - \delta d(x, y), & (1a) \\ f(y) - \delta d(z, y) < f(z) & \forall z \in X \setminus \{y\}. & (1b) \end{cases}$ \checkmark \land \checkmark \checkmark \land \checkmark \checkmark \land \checkmark \land \checkmark \checkmark \land \checkmark \checkmark \land \checkmark \land \checkmark \checkmark \land \checkmark \checkmark

The original principle
$$\mathfrak{O} \in \mathfrak{OOO}$$
What since
 \mathfrak{OOOO} An application
 \mathfrak{OOO} Theorem - Ekeland [Eke74]
 $\mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let $x \in \text{dom}(f), \delta > 0$. Then $\exists y \in X$ s.t. $\mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let $x \in \text{dom}(f), \delta > 0$. Then $\exists y \in X$ s.t. \checkmark $\begin{cases} f(y) \leq f(x) - \delta d(x, y), & (1a) \\ f(y) - \delta d(z, y) < f(z) & \forall z \in X \setminus \{y\}. & (1b) \end{cases}$ $\overset{5}{4}$ $\overset{6}{4}$ $\overset{5}{4}$ $\overset{6}{4}$ $\overset{5}{4}$ $\overset{6}{4}$ $\overset{7}{4}$ $\overset{7}{4}$ $\overset{7}{4}$ $\overset{7}{4}$ $\overset{7}{4}$ $\overset{7}{4}$ $\overset{7}{4}$ $\overset{7}{4}$ $\overset{7}{4}$

$${}_{igstacleftarrow y}$$
 stays in X

The original principleWhat since
coordAn application
coordTheorem - Ekeland [Eke74]Let
$$(X, d)$$
 be a complete metric space. Let $f: X \mapsto$ $\mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let $x \in \text{dom}(f), \delta > 0$. Then $\exists y \in X$ s.t. \checkmark $\begin{cases} f(y) \leq f(x) - \delta d(x, y), \\ f(y) - \delta d(z, y) < f(z) \end{cases}$ \checkmark $\lbrace f(y) - \delta d(z, y) < f(z) \\ \bullet x \rbrace$ \checkmark \downarrow \checkmark \downarrow \checkmark \downarrow \checkmark \downarrow \checkmark \downarrow \land \downarrow \checkmark \downarrow \land \downarrow \checkmark \downarrow \land \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \bullet \downarrow \bullet \downarrow \bullet \downarrow \downarrow \downarrow \bullet \downarrow \bullet

- $_{
 m loc}$ ~ no $+\infty$ behavior

The original principleWhat since
cooldAn application
cooldTheorem - Ekeland [Eke74]Let
$$(X, d)$$
 be a complete metric space. Let $f: X \mapsto$ $\mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let $x \in \text{dom}(f), \delta > 0$. Then $\exists y \in X$ s.t. \checkmark $\begin{cases} f(y) \leq f(x) - \delta d(x, y), & (1a) \\ f(y) - \delta d(z, y) < f(z) & \forall z \in X \setminus \{y\}. & (1b) \end{cases}$ \checkmark \checkmark \checkmark \checkmark \checkmark \downarrow \downarrow <

🔒 No (local) compactness

9

2

2 -

1

0.

-1

The original principle ○○○●○○	What since 00000	An application
The proof (1/3)		

Let $S_0 \coloneqq \operatorname{dom} f$, and $\varepsilon > 0$.

The original principle ○○○●○○	What since 00000	An application
The proof (1/3)		

Let $S_0 := \text{dom } f$, and $\varepsilon > 0$. Pick $x_0 \in S_0$ such that $f(x_0) \leq \inf_X f + \varepsilon$.

The original principle ○○○●○○	What since 00000	An application
The proof (1/3)		

$$S_i \coloneqq \{x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1})\},\$$

The original principle ○○○●○○	What since 00000	An application
The proof (1/3)		

$$S_i \coloneqq \{x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1})\},\$$

$$\delta d(x, x_{i-1}) \leqslant f(x_{i-1}) - f(x)$$

The original principle ○○●●○○	What since 00000	An application
The proof (1/3)		

$$S_i \coloneqq \{x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1})\},\$$

$$\delta d(x, x_{i-1}) \leqslant f(x_{i-1}) - f(x)$$

and pick $x_i \in S_i$ such that

$$f(x_i) \leqslant \frac{f(x_{i-1}) + \inf_{y \in S_i} f(y)}{2}.$$

The original principle ○○●●○○	What since 00000	An application
The proof (1/3)		

$$S_i \coloneqq \{x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1})\},\$$

$$\delta d(x, x_{i-1}) \leqslant f(x_{i-1}) - f(x)$$

and pick $x_i \in S_i$ such that

$$f(x_i) \leqslant \frac{f(x_{i-1}) + \inf_{y \in S_i} f(y)}{2}.$$

The original principle ○○●●○○	What since 00000	An application
The proof (1/3)		

$$S_i \coloneqq \{x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1})\},\$$

$$\delta d(x, x_{i-1}) \leqslant f(x_{i-1}) - f(x)$$

and pick $x_i \in S_i$ such that

$$f(x_i) \leqslant \frac{f(x_{i-1}) + \inf_{y \in S_i} f(y)}{2}.$$

The original principle ○○●●○○	What since 00000	An application
The proof (1/3)		

$$S_i \coloneqq \{x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1})\},\$$

$$\delta d(x, x_{i-1}) \leqslant f(x_{i-1}) - f(x)$$

and pick $x_i \in S_i$ such that

$$f(x_i) \leqslant \frac{f(x_{i-1}) + \inf_{y \in S_i} f(y)}{2}.$$

 $\begin{array}{l} S_i \text{ nonempty and closed.} \\ \text{Let us show that } S_{i+1} \subset S_i \text{, and diam } S_i \underset{i \rightarrow \infty}{\longrightarrow} 0. \end{array}$

The original principle ○○○○●○	What since 00000	An application
The proof (2/3)		
Let $x \in S_{i+1}$:		

$$f(x) \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i)$$

The original principle ○○○○●○	What since 00000	An application
The proof (2/3)		
Let $x \in S_{i+1}$:		

$$f(x) \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i)$$
$$\underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right]$$

The original principle ००००●०	What since 00000	An application
The proof (2/3)		
Let $x \in S_{i+1}$:		

$$\begin{split} f(x) & \leqslant \limits_{x \in S_{i+1}} f(x_i) - \delta d(x, x_i) \\ & \leqslant \limits_{x_i \in S_i} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right] \\ & \leqslant \limits_{\Delta \text{ ineq}} f(x_{i-1}) - \delta d(x, x_{i-1}), \end{split}$$

f

The original principle ○○○○●○	What since 00000	An application
The proof (2/3)		
Let $x \in S_{i+1}$:		

$$\begin{split} f(x) &\leqslant_{x \in S_{i+1}} f(x_i) - \delta d(x, x_i) \\ &\leqslant_{x_i \in S_i} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right] \\ &\leqslant_{x_i \in I_i} f(x_{i-1}) - \delta d(x, x_{i-1}), \\ &\vartriangle \text{ ineq } \end{split}$$

The original principle ००००●੦	What since 00000	An application
The proof (2/3)		
Let $x \in S_{i+1}$:	On the other hand, since $\inf_{S_{i+1}} f \geqslant$	$\inf_{S_i} f$,
$f(x) \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i)$	$f(x_i) - \inf_{S_{i+1}} f \leq [f(x_{i-1}) + \inf_{S_i} f - 2$	$\inf_{S_{i+1}} f]/2$
$\underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right]$		
$\leq f(x_{i-1}) - \delta d(x, x_{i-1}),$		

The original principle ००००●०	What since An application 00000 0000
The proof (2/3)	
Let $x \in S_{i+1}$:	On the other hand, since $\inf_{S_{i+1}} f \geqslant \inf_{S_i} f$,
$f(x) \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i)$	$f(x_i) - \inf_{S_{i+1}} f \leq [f(x_{i-1}) + \inf_{S_i} f - 2\inf_{S_{i+1}} f]/2$
$\underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right]$	$\leq [f(x_{i-1}) - \inf_{S_i} f]/2 \leq \cdots \leq \frac{\varepsilon}{2^i}.$
$ \underset{\bigtriangleup \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}), $	

The original principle ○○○⊙●○	What since An application 00000 0000
The proof (2/3)	
Let $x \in S_{i+1}$:	On the other hand, since $\inf_{S_{i+1}} f \geqslant \inf_{S_i} f$,
$f(x) \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i)$	$f(x_i) - \inf_{S_{i+1}} f \leq [f(x_{i-1}) + \inf_{S_i} f - 2\inf_{S_{i+1}} f]/2$
$\underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right]$	$\leq [f(x_{i-1}) - \inf_{S_i} f]/2 \leq \cdots \leq \frac{\varepsilon}{2^i}.$
$\underset{\bigtriangleup \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}),$	$\delta d(x, x_i) \leq f(x_i) - f(x) \leq f(x_i) - \inf_{S_{i+1}} f \leq \frac{\varepsilon}{2^i}.$

The original principle ००००●०	What since 00000	An application
The proof (2/3)		
Let $x \in S_{i+1}$:	On the other hand, since $\inf_{S_{i+1}} f \geqslant$	$\inf_{S_i} f$,
$f(x) \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i)$	$f(x_i) - \inf_{S_{i+1}} f \leq [f(x_{i-1}) + \inf_{S_i} f - 2$	$\inf_{S_{i+1}} f]/2$
$\leq_{x_i \in S_i} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right]$	$\leq [f(x_{i-1}) - \inf_{S_i} f]/2$	$\leqslant \cdots \leqslant \frac{\varepsilon}{2^i}.$
$ \underset{\triangle \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}), $	$\delta d(x, x_i) \leq f(x_i) - f(x) \leq f(x_i) - \frac{1}{2}$	$\inf_{S_{i+1}} f \leqslant \frac{\varepsilon}{2^i}.$
and $x \in S_i$, so that $S_{i+1} \subset S_i$.	so that $d(x,x_{i-1})\leqslant rac{arepsilon}{\delta 2^i}$, and diam ,	$S_i \xrightarrow[i \to \infty]{} 0.$

The original principle ००००●०	What since 00000	An application
The proof (2/3)		
Let $x \in S_{i+1}$:	On the other hand, since $\inf_{S_{i+1}} f \geqslant$	$\inf_{S_i} f$,
$f(x) \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i)$	$f(x_i) - \inf_{S_{i+1}} f \leq [f(x_{i-1}) + \inf_{S_i} f - 2$	$\inf_{S_{i+1}} f]/2$
$\underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right]$	$\leqslant [f(x_{i-1}) - \inf_{S_i} f]/2 \leqslant$	$\leqslant \cdots \leqslant \frac{\varepsilon}{2^i}.$
$ \underset{\triangle \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}), $	$\delta d(x, x_i) \leq f(x_i) - f(x) \leq f(x_i) - \frac{1}{2}$	$\inf_{S_{i+1}} f \leqslant \frac{\varepsilon}{2^i}.$
and $x \in S_i$, so that $S_{i+1} \subset S_i$.	so that $d(x,x_{i-1})\leqslant rac{arepsilon}{\delta 2^i}$, and diam S	$S_i \xrightarrow[i \to \infty]{} 0.$

Def Since X is closed, by Cantor's intersection theorem, there exists an unique $y\in \bigcap_{i=0}^\infty S_i.$

Averil Prost	Ekeland	6/16
Aveni i rost	Excland	0/10

The original principle ○○○○○●	What since 00000	An application
The proof $(3/3)$		

• Since $y \in S_1$, $f(y) \leq f(x_0) - \delta d(y, x_0)$, hence (1a).

The original principle ○○○○●	What since 00000	An application
The proof (3/3)		

- Since $y \in S_1$, $f(y) \leq f(x_0) \delta d(y, x_0)$, hence (1a).
- Let $x \neq y$, and $i \in \mathbb{N}$ s.t. $x \notin S_{i+1}$.

The original principle ○○○○●	What since 00000	An application
The proof (3/3)		

• Since $y \in S_1$, $f(y) \leq f(x_0) - \delta d(y, x_0)$, hence (1a). • Let $x \neq y$, and $i \in \mathbb{N}$ s.t. $x \notin S_{i+1}$.

$$f(x) >_{x \notin S_{i+1}} f(x_i) - \delta d(x, x_i)$$

The original principle ○○○○●	What since 00000	An application
The proof (3/3)		

• Since $y \in S_1$, $f(y) \leq f(x_0) - \delta d(y, x_0)$, hence (1a). • Let $x \neq y$, and $i \in \mathbb{N}$ s.t. $x \notin S_{i+1}$.

$$f(x) >_{\substack{x \notin S_{i+1} \\ y \in S_{i+1}}} f(x_i) - \delta d(x, x_i)$$
$$\geq_{\substack{y \in S_{i+1} \\ y \in S_{i+1}}} f(y) + \delta d(y, x_i) - \delta d(x, x_i),$$

The original principle ○○○○●		What since 00000	An application
	$(\langle 0 \rangle \langle 0 \rangle)$		

• Since $y \in S_1$, $f(y) \leq f(x_0) - \delta d(y, x_0)$, hence (1a). • Let $x \neq y$, and $i \in \mathbb{N}$ s.t. $x \notin S_{i+1}$. $f(x) \underset{\substack{x \notin S_{i+1}}{>} f(x_i) - \delta d(x, x_i)$ $\underset{\substack{y \in S_{i+1}}{>} f(y) + \delta d(y, x_i) - \delta d(x, x_i),$ $\underset{\substack{\lambda \in \mathbb{N}}{>} f(y) - \delta d(y, x),$

hence (1b).

The original principle	What since ●○○○○	An application

Table of Contents

The original principle

History Statement The proof

What since

History Hilbert version: Ekeland-Lebourg Smooth version: Borwein-Preiss

An application

The original 000000	principle	What since ⊙●○○○	An application
History	/ (2/2)		
1974	Ivar Ekeland's On the variational pri	<i>nciple</i> [Eke74], metric, distances.	
Ļ			

The original p	rinciple	What since ●●○○○	An application
History	(2/2)		
1974 1976	Ivar Ekeland's <i>On the variational prir</i> Ekeland and Lebourg [EL76], Banach	<i>nciple</i> [Eke74], metric, distances. n, linear functions.	

The original ; 000000	rinciple	What since ○●○○○	An application
History	(2/2)		
1974 1976	Ivar Ekeland's <i>On the variational prin</i> Ekeland and Lebourg [EL76], Banacl	<i>nciple</i> [Eke74], metric, distances. h, linear functions.	
1984	[pub] Aubin and Ekeland Applied No	onlinear Analysis [AE84], excellent.	

The original	principle What since 00000		An application
History	/ (2/2)		
1			
1974	Ivar Ekeland's On the variational principle [Eke74	4], metric, distances.	
1976	Ekeland and Lebourg [EL76], Banach, linear fund	ctions.	
1984	[pub] Aubin and Ekeland Applied Nonlinear Anal	<i>lysis</i> [AE84], excellent.	
1987	Borwein-Preiss A smooth variational principle [.] [BP87], Banach, "gauge-	type".

The original	principle What sin o•000	te	An application
History	v (2/2)		
1			
1974	Ivar Ekeland's On the variational principle [Eke74], metric, distances.	
1976	Ekeland and Lebourg [EL76], Banach, linea	r functions.	
1984	[pub] Aubin and Ekeland Applied Nonlinear	Analysis [AE84], excellent.	
1987	Borwein-Preiss A smooth variational princip	<i>le []</i> [BP87], Banach, "gauge-	type".
1993	Deville, Godefroy, Zizler A smooth variation	aal principle [] [DGZ93], Banad	ch, bumps.
•			

The original principle	What since ⊙o●⊙⊙	An application

Theorem – Ekeland-Lebourg [EL76] Let a closed bounded $D \subset H$ real Hilbert, and $f: D \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded.

The original principle 000000	What since ⊙⊙●⊙⊙	An application

Theorem – Ekeland-Lebourg [EL76] Let a closed bounded $D \subset H$ real Hilbert, and $f: D \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. $\forall \delta > 0, \exists \overline{x} \in D \text{ and } p \in H' \text{ s.t.}$ $\begin{cases} |p|_{H'} < \delta, & (2a) \\ x \to f(x) + \langle p, x \rangle_{H',H} \text{ admits a strict minimum over } D \text{ in } \overline{x}. & (2b) \end{cases}$

The original principle	What since ○○●○○	An application

Theorem – Ekeland-Lebourg [EL76] Let a closed bounded $D \subset H$ real Hilbert, and $f: D \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. $\forall \delta > 0, \exists \overline{x} \in D \text{ and } p \in H' \text{ s.t.}$ $\begin{cases} |p|_{H'} < \delta, & (2a) \\ x \to f(x) + \langle p, x \rangle_{H',H} \text{ admits a strict minimum over } D \text{ in } \overline{x}. & (2b) \end{cases}$

Boundedness of
$$D$$

really essential $(f \equiv c)$

The original principle	What since ⊙⊙●⊙⊙	An application

 $\begin{array}{l} \textbf{Theorem} - \textbf{Ekeland-Lebourg [EL76]} \quad \text{Let a closed bounded } D \subset H \text{ real Hilbert, and} \\ f: D \mapsto \mathbb{R} \cup \{\infty\} \text{ be proper, lsc and lower bounded.} \quad \forall \, \delta > 0, \ \exists \, \overline{x} \in D \text{ and } p \in H' \text{ s.t.} \\ \\ \begin{cases} |p|_{H'} < \delta, & (2a) \\ x \to f(x) + \langle p, x \rangle_{H',H} \text{ admits a strict minimum over } D \text{ in } \overline{x}. & (2b) \end{cases}$

• Boundedness of Dreally essential $(f \equiv c)$

Very nice perturbation

The original principle	What since	An application
	00000	

 $\begin{array}{l} \textbf{Theorem} - \textbf{Ekeland-Lebourg} \ [\textbf{EL76}] & \text{Let a closed bounded } D \subset H \ \text{real Hilbert, and} \\ f: D \mapsto \mathbb{R} \cup \{\infty\} \ \text{be proper, lsc and lower bounded.} & \forall \, \delta > 0, \ \exists \, \overline{x} \in D \ \text{and} \ p \in H' \ \text{s.t.} \\ & \left\{ \begin{array}{c} |p|_{H'} < \delta, & (2a) \\ x \to f(x) + \langle p, x \rangle_{H',H} \ \text{admits a strict minimum over } D \ \text{in } \overline{x}. & (2b) \end{array} \right. \end{array}$

- Boundedness of Dreally essential $(f \equiv c)$
- Very nice perturbation

The proof is quite different.

The original principle	What since ○○○●○	An application

Let (X, d) be a complete metric space.

Def – gauge-type functions Any lower semicontinuous $\rho: X \times X \mapsto [0, \infty]$ satisfying $\rho(x, x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x, y) \leq \eta$ implies $d(x, y) \leq \varepsilon$.

The original principle 000000	What since ○○○●○	An application

Let (X, d) be a complete metric space.

Def – gauge-type functions Any lower semicontinuous $\rho: X \times X \mapsto [0, \infty]$ satisfying $\rho(x, x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x, y) \leq \eta$ implies $d(x, y) \leq \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leq \inf_X f + \varepsilon$.

The original principle 000000	What since ○○○●○	An application

Let (X, d) be a complete metric space.

Def - gauge-type functions Any lower semicontinuous $\rho: X \times X \mapsto [0, \infty]$ satisfying $\rho(x, x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x, y) \leq \eta$ implies $d(x, y) \leq \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leq \inf_X f + \varepsilon$. Then there exist $y \in X$ and a sequence $(x_i)_{i=0}^{\infty} \subset X$ such that

$$\rho(x_0, y) \leqslant \varepsilon / \delta_0 \quad \text{and} \quad \rho(x_i, y) \leqslant \varepsilon / (2^i \delta_0)$$
(3a)

(3b)

(3c)

The original principle 000000	What since ○○○●○	An application

Let (X, d) be a complete metric space.

Def - gauge-type functions Any lower semicontinuous $\rho: X \times X \mapsto [0, \infty]$ satisfying $\rho(x, x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x, y) \leq \eta$ implies $d(x, y) \leq \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leq \inf_X f + \varepsilon$. Then there exist $y \in X$ and a sequence $(x_i)_{i=0}^{\infty} \subset X$ such that

$$\rho(x_0, y) \leqslant \varepsilon / \delta_0 \quad \text{and} \quad \rho(x_i, y) \leqslant \varepsilon / (2^i \delta_0)$$
(3a)

$$f(y) + \sum_{i=0}^{\infty} \delta_i \rho(y, x_i) \leqslant f(x_0)$$
(3b)

(3c)

The original principle	What since	An application
	00000	

Let (X, d) be a complete metric space.

Def – gauge-type functions Any lower semicontinuous $\rho: X \times X \mapsto [0, \infty]$ satisfying $\rho(x,x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x,y) \leq \eta$ implies $d(x,y) \leq \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_+$, and $x_0 \in X$ such that $f(x_0) \leq \inf_X f + \varepsilon$. Then there exist $y \in X$ and a sequence $(x_i)_{i=0}^{\infty} \subset X$ such that

$$\rho(x_0, y) \leqslant \varepsilon / \delta_0 \quad \text{and} \quad \rho(x_i, y) \leqslant \varepsilon / (2^i \delta_0)$$
(3a)

$$f(y) + \sum_{i=0}^{\infty} \delta_i \rho(y, x_i) \leqslant f(x_0)$$
(3b)

 $\begin{cases} f(y) + \sum_{i=0}^{\infty} \delta_i \rho(y, x_i) \leqslant f(x_0) \\ f(x) + \sum_{i=0}^{\infty} \delta_i \rho(x, x_i) > f(y) + \sum_{i=0}^{\infty} \delta_i \rho(y, x_i) & \forall x \in X \setminus \{y\}. \end{cases}$ (3c)

The original principle	What since	An application
	0000	

Illustration of Borwein-Preiss

Figure: Iterative construction with $f(x) = (1 + |x|)^{-1}$, $\delta_i = 0.01/(1 + i)^2$, $\rho(x, y) = |x - y|^2$.

The original principle	What since	An application
	0000	

Illustration of Borwein-Preiss

Figure: Iterative construction with $f(x) = (1 + |x|)^{-1}$, $\delta_i = 0.01/(1 + i)^2$, $\rho(x, y) = |x - y|^2$.

The original principle	What since	An application

Illustration of Borwein-Preiss

Figure: Iterative construction with $f(x) = (1 + |x|)^{-1}$, $\delta_i = 0.01/(1 + i)^2$, $\rho(x, y) = |x - y|^2$.

The original principle	What since 00000	An application ●000

Table of Contents

The original principle

History Statement The proof

What since

History Hilbert version: Ekeland-Lebourg Smooth version: Borwein-Preiss

An application

The original principle	What since	An application
000000	00000	○●○○

The Wasserstein context

• Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.

The original principle	What since 00000	An application ○●○○

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.

The original principle	What since 00000	An application

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.
- Wasserstein topology: duality with $C_2(E)$.

The original principle	What since 00000	An application ○●○○

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.
- Wasserstein topology: duality with $C_2(E)$.

The problem

• Aim: minimize a (coercive, lsc, proper) function in the Wasserstein space.

The original principle	What since 00000	An application 0●00

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.
- Wasserstein topology: duality with $C_2(E)$.

The problem

- Aim: minimize a (coercive, lsc, proper) function in the Wasserstein space.
- Bounded sets for the Wasserstein distance are narrowly compact, but not compact in the Wasserstein topology.

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.
- Wasserstein topology: duality with $C_2(E)$.

The problem

- Aim: minimize a (coercive, lsc, proper) function in the Wasserstein space.
- Bounded sets for the Wasserstein distance are narrowly compact, but not compact in the Wasserstein topology.
- A solution by Marigonda & Quincampoix [MQ18]
 - Use Ekeland to obtain δ -minimizers that are exact strict minima of perturbed functions.

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.
- Wasserstein topology: duality with $C_2(E)$.

The problem

- Aim: minimize a (coercive, lsc, proper) function in the Wasserstein space.
- Bounded sets for the Wasserstein distance are narrowly compact, but not compact in the Wasserstein topology.
- A solution by Marigonda & Quincampoix [MQ18]
 - Use Ekeland to obtain δ -minimizers that are exact strict minima of perturbed functions.
 - What with Borwein & Preiss?

The original principle	What since	An application
000000	00000	○○●●

Thank you!

[AE84] Jean Pierre Aubin and I. Ekeland.

Applied Nonlinear Analysis.

Pure and Applied Mathematics. Wiley, New York, 1984.

[BP87] J. M. Borwein and D. Preiss.

A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions.

Transactions of the American Mathematical Society, 303(2):517–527, 1987.

[BZ05] Jonathan M. Borwein and Qiji J. Zhu.

Techniques of Variational Analysis.

CMS Books in Mathematics. Springer-Verlag, New York, 2005.

The original principle	What since	An application
000000	00000	0000

[DGZ93] R. Deville, G. Godefroy, and V. Zizler.

A Smooth Variational Principle with Applications to Hamilton-Jacobi Equations in Infinite Dimensions.

Journal of Functional Analysis, 111(1):197–212, January 1993.

[Eke74] I. Ekeland.

Journal of Mathematical Analysis and Applications, 47(2):324–353, August 1974.

[EL76] Ivar Ekeland and Gérard Lebourg.

Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces. *Transactions of the American Mathematical Society*, 224(2):193–216, 1976.

[MQ18] Antonio Marigonda and Marc Quincampoix.
 Mayer control problem with probabilistic uncertainty on initial positions.
 Journal of Differential Equations, 264(5):3212–3252, March 2018.

A			
Averi	I P	ro	sι

On the variational principle.