## The simple beauty of the eikonal equation

Humble introduction to Lax-Oleǐnik analysis for some Hamilton-Jacobi equations

Averil Prost

September 27, 2022
LMRS doctoral seminar

## Table of Contents

## Framework

The eikonal equation
Some words on viscosity (not a lot, I promise)

## Lax-Oleĭnik

Representation of the solution
Extension to a general (convex) Hamiltonian

## Some examples

Running example
Minimal distance to the boundary

## Definitions

The eikonal equation Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded. Find $u \in W^{1, \infty}(\Omega)$ s.t.

$$
\begin{cases}\|\nabla u(x)\|=1 & x \in \Omega, \\ u(x)=u_{b}(x) & x \in \partial \Omega .\end{cases}
$$

## Definitions

The eikonal equation Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded. Find $u \in W^{1, \infty}(\Omega)$ s.t.

$$
\begin{cases}\|\nabla u(x)\|=1 & x \in \Omega \\ u(x)=u_{b}(x) & x \in \partial \Omega .\end{cases}
$$

(Our) Hamilton-Jacobi equation Let $H: \mathbb{R}^{n} \mapsto \mathbb{R}$ be convex, Isc and proper, $\Omega \subset \mathbb{R}^{n}$ be open with suitable boundaries, and $n \in W^{1, \infty}(\Omega,[\inf H, \bar{n}])$. Find $u \in W^{1, \infty}(\Omega)$ s.t.

$$
\begin{cases}H(\nabla u(x))=n(x) & x \in \Omega, \\ u(x)=u_{b}(x) & x \in \partial \Omega .\end{cases}
$$

## What is a solution?

Toy example in dimension $n=2$, with

$$
H(x, y):=x+|y|, \quad \Omega:=] 0, \infty\left[\times \mathbb{R}, \quad \partial \Omega=\{0\} \times \mathbb{R}, \quad n \equiv 0, \quad u_{b}(x, y):=e^{-y^{2}}\right.
$$

## What is a solution?

Toy example in dimension $n=2$, with

$$
H(x, y):=x+|y|, \quad \Omega:=] 0, \infty\left[\times \mathbb{R}, \quad \partial \Omega=\{0\} \times \mathbb{R}, \quad n \equiv 0, \quad u_{b}(x, y):=e^{-y^{2}}\right.
$$

$$
\begin{cases}\partial_{x} u(x, y)+\left|\partial_{y} u(x, y)\right|=0 & x>0, y \in \mathbb{R} \\ u(x, y):=e^{-y^{2}} & x \in\{0\}, y \in \mathbb{R}\end{cases}
$$

## What is a solution?

Toy example in dimension $n=2$, with

$$
H(x, y):=x+|y|, \quad \Omega:=] 0, \infty\left[\times \mathbb{R}, \quad \partial \Omega=\{0\} \times \mathbb{R}, \quad n \equiv 0, \quad u_{b}(x, y):=e^{-y^{2}} .\right.
$$

$$
\begin{cases}\partial_{x} u(x, y)+\left|\partial_{y} u(x, y)\right|=0 & x>0, y \in \mathbb{R} \\ u(x, y):=e^{-y^{2}} & x \in\{0\}, y \in \mathbb{R} .\end{cases}
$$

If pointwise sense, we have

- $\left|\partial_{y} u_{b}(0,0)\right|=0$, so $\partial_{x} u(x, y)=0$, and $u(x, 0)=u_{b}(0,0)=1$ for all $x \geqslant 0$.


## What is a solution?

Toy example in dimension $n=2$, with

$$
H(x, y):=x+|y|, \quad \Omega:=] 0, \infty\left[\times \mathbb{R}, \quad \partial \Omega=\{0\} \times \mathbb{R}, \quad n \equiv 0, \quad u_{b}(x, y):=e^{-y^{2}} .\right.
$$

$$
\begin{cases}\partial_{x} u(x, y)+\left|\partial_{y} u(x, y)\right|=0 & x>0, y \in \mathbb{R} \\ u(x, y):=e^{-y^{2}} & x \in\{0\}, y \in \mathbb{R} .\end{cases}
$$

If pointwise sense, we have

- $\left|\partial_{y} u_{b}(0,0)\right|=0$, so $\partial_{x} u(x, y)=0$, and $u(x, 0)=u_{b}(0,0)=1$ for all $x \geqslant 0$.
- $\left|\partial_{y} u_{b}(0, y)\right|>0$ if $y \neq 0$, so $\partial_{x} u(x, y)<0$, and the solution is discontinuous at $y=0$.


## What is a solution

Viscosity solution A function $u$ is a subsolution (resp. supersolution) if $\forall x \in \Omega$, $\forall p \in \partial^{+} u(x)$ (resp. $\forall p \in \partial^{-} u(x)$ ), we have

$$
\left\{\begin{array}{lll}
H(p) \leqslant n(x) & H(p) \geqslant n(x) & x \in \Omega \\
u(x) \leqslant u_{b}(x) & u(x) \geqslant u_{b}(x) & x \in \partial \Omega
\end{array}\right.
$$

It is a solution if it is both a sub and supersolution.

## What is a solution

Viscosity solution A function $u$ is a subsolution (resp. supersolution) if $\forall x \in \Omega$, $\forall p \in \partial^{+} u(x)$ (resp. $\forall p \in \partial^{-} u(x)$ ), we have

$$
\left\{\begin{array}{lll}
H(p) \leqslant n(x) & H(p) \geqslant n(x) & x \in \Omega \\
u(x) \leqslant u_{b}(x) & u(x) \geqslant u_{b}(x) & x \in \partial \Omega
\end{array}\right.
$$

It is a solution if it is both a sub and supersolution.
On our example:

- $u \equiv 0$ is subsolution (exactly satisfies the equation, and $u \leqslant u_{b}$ on the boundary).


## What is a solution

Viscosity solution A function $u$ is a subsolution (resp. supersolution) if $\forall x \in \Omega$, $\forall p \in \partial^{+} u(x)$ (resp. $\forall p \in \partial^{-} u(x)$ ), we have

$$
\left\{\begin{array}{lll}
H(p) \leqslant n(x) & H(p) \geqslant n(x) & x \in \Omega \\
u(x) \leqslant u_{b}(x) & u(x) \geqslant u_{b}(x) & x \in \partial \Omega
\end{array}\right.
$$

It is a solution if it is both a sub and supersolution.
On our example:

- $u \equiv 0$ is subsolution (exactly satisfies the equation, and $u \leqslant u_{b}$ on the boundary).
- $u(x, y):=u_{b}(x, y)$ is supersolution $\left(\partial_{x} u=0,\left|\partial_{y} u\right| \geqslant 0\right.$ and exact boundary condition).


## Viscosity solutions are maximal

Proposition - [Lio82] Viscosity solutions may be build as the pointwise maximum of all Lipschitz-continuous viscosity subsolutions.

## Viscosity solutions are maximal

Proposition - [Lio82] Viscosity solutions may be build as the pointwise maximum of all Lipschitz-continuous viscosity subsolutions.

- Precisely the construction used in Perron's method (see for instance [For22]).


## Viscosity solutions are maximal

Proposition - [Lio82] Viscosity solutions may be build as the pointwise maximum of all Lipschitz-continuous viscosity subsolutions.

- Precisely the construction used in Perron's method (see for instance [For22]).
- Hints an underlying convention (why not min of subsolutions?).


## Viscosity solutions are maximal

Proposition - [Lio82] Viscosity solutions may be build as the pointwise maximum of all Lipschitz-continuous viscosity subsolutions.

- Precisely the construction used in Perron's method (see for instance [For22]).
- Hints an underlying convention (why not min of subsolutions?).
- Historically, rooted in vanishing viscosity method (see [Eva10]), with the sign convention

$$
H(\nabla u(x))-\varepsilon \Delta u(x)=0 .
$$

## Table of Contents

```
Framework
    The eikonal equation
    Some words on viscosity (not a lot, I promise)
Lax-Oleǐnik
    Representation of the solution
    Extension to a general (convex) Hamiltonian
```

Some examples
Running example
Minimal distance to the boundary

## Idea on the eikonal equation (1/2)

Suppose that $u$ is a lipschitz subsolution. For all $T>0$,

$$
u(x)-u(y)=\int_{s=0}^{T}\left[\nabla u\left(y+\frac{s}{T}(x-y)\right) \cdot \frac{x-y}{T}\right.
$$

## Idea on the eikonal equation (1/2)

Suppose that $u$ is a lipschitz subsolution. For all $T>0$,

$$
u(x)-u(y)=\int_{s=0}^{T}\left[\nabla u\left(y+\frac{s}{T}(x-y)\right) \cdot \frac{x-y}{T}-\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right] d s
$$

where $\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}=0$ if $\frac{|y-x|}{T} \leqslant 1$, and $\infty$ otherwise.

## Idea on the eikonal equation (1/2)

Suppose that $u$ is a lipschitz subsolution. For all $T>0$,

$$
u(x)-u(y)=\int_{s=0}^{T}\left[\nabla u\left(y+\frac{s}{T}(x-y)\right) \cdot \frac{x-y}{T}-\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right] d s
$$

where $\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}=0$ if $\frac{|y-x|}{T} \leqslant 1$, and $\infty$ otherwise.
We have $\forall q \in \mathbb{R}^{n}$ that $\max _{p \in \mathbb{R}^{n}}\left[q \cdot p-\delta_{\{|p| \leqslant 1\}}\right]=\max _{|p| \leqslant 1} q \cdot p=|q|$.

## Idea on the eikonal equation (1/2)

Suppose that $u$ is a lipschitz subsolution. For all $T>0$,

$$
u(x)-u(y)=\int_{s=0}^{T}\left[\nabla u\left(y+\frac{s}{T}(x-y)\right) \cdot \frac{x-y}{T}-\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right] d s
$$

where $\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}=0$ if $\frac{|y-x|}{T} \leqslant 1$, and $\infty$ otherwise.
We have $\forall q \in \mathbb{R}^{n}$ that $\max _{p \in \mathbb{R}^{n}}\left[q \cdot p-\delta_{\{|p| \leqslant 1\}}\right]=\max _{|p| \leqslant 1} q \cdot p=|q|$.

So now

$$
u(x)-u(y) \leqslant \int_{s=0}^{T}|\nabla u|+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}} d s
$$

## Idea on the eikonal equation (1/2)

Suppose that $u$ is a lipschitz subsolution. For all $T>0$,

$$
u(x)-u(y)=\int_{s=0}^{T}\left[\nabla u\left(y+\frac{s}{T}(x-y)\right) \cdot \frac{x-y}{T}-\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right] d s
$$

where $\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}=0$ if $\frac{|y-x|}{T} \leqslant 1$, and $\infty$ otherwise.
We have $\forall q \in \mathbb{R}^{n}$ that $\max _{p \in \mathbb{R}^{n}}\left[q \cdot p-\delta_{\{|p| \leqslant 1\}}\right]=\max _{|p| \leqslant 1} q \cdot p=|q|$.
So now

$$
u(x)-u(y) \leqslant \int_{s=0}^{T}|\nabla u|+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}} d s \leqslant \int_{s=0}^{T} 1+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}} d s
$$

## Idea on the eikonal equation (1/2)

Suppose that $u$ is a lipschitz subsolution. For all $T>0$,

$$
u(x)-u(y)=\int_{s=0}^{T}\left[\nabla u\left(y+\frac{s}{T}(x-y)\right) \cdot \frac{x-y}{T}-\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right] d s
$$

where $\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}=0$ if $\frac{|y-x|}{T} \leqslant 1$, and $\infty$ otherwise.
We have $\forall q \in \mathbb{R}^{n}$ that $\max _{p \in \mathbb{R}^{n}}\left[q \cdot p-\delta_{\{|p| \leqslant 1\}}\right]=\max _{|p| \leqslant 1} q \cdot p=|q|$.
So now

$$
u(x)-u(y) \leqslant \int_{s=0}^{T}|\nabla u|+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}} d s \leqslant \int_{s=0}^{T} 1+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}} d s=T\left(1+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right) .
$$

## Idea on the eikonal equation (2/2)

## Candidate solution We define

$$
u(x):=\inf _{y \in \partial \Omega, T>0}\left[u_{b}(y)+T\left(1+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right)\right]
$$

## Idea on the eikonal equation (2/2)

## Candidate solution We define

$$
u(x):=\inf _{y \in \partial \Omega, T>0}\left[u_{b}(y)+T\left(1+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right)\right]=\inf _{y \in \partial \Omega}\left[u_{b}(y)+|y-x|\right] .
$$

## Idea on the eikonal equation (2/2)

## Candidate solution We define

$$
u(x):=\inf _{y \in \partial \Omega, T>0}\left[u_{b}(y)+T\left(1+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right)\right]=\inf _{y \in \partial \Omega}\left[u_{b}(y)+|y-x|\right] .
$$

- If $u_{b} \equiv 0, u$ is exactly the minimal distance to the boundary.


## Idea on the eikonal equation (2/2)

## Candidate solution We define

$$
u(x):=\inf _{y \in \partial \Omega, T>0}\left[u_{b}(y)+T\left(1+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right)\right]=\inf _{y \in \partial \Omega}\left[u_{b}(y)+|y-x|\right] .
$$

- If $u_{b} \equiv 0, u$ is exactly the minimal distance to the boundary.
- Condition on $u_{b}$ : we must have $u_{b}(x)=\inf _{y \in \partial \Omega}\left[u_{b}(y)+|y-x|\right]$ for all $x$ ( $u_{b}$ 1-lip).


## Idea on the eikonal equation (2/2)

## Candidate solution We define

$$
u(x):=\inf _{y \in \partial \Omega, T>0}\left[u_{b}(y)+T\left(1+\delta_{\left\{\frac{|y-x|}{T} \leqslant 1\right\}}\right)\right]=\inf _{y \in \partial \Omega}\left[u_{b}(y)+|y-x|\right] .
$$

- If $u_{b} \equiv 0, u$ is exactly the minimal distance to the boundary.
- Condition on $u_{b}$ : we must have $u_{b}(x)=\inf _{y \in \partial \Omega}\left[u_{b}(y)+|y-x|\right]$ for all $x$ ( $u_{b} 1$-lip).

Theorem The candidate solution is indeed the viscosity solution.

## Legendre transform

Let $H: \mathbb{R}^{n} \mapsto \mathbb{R}$ be convex, I.s.c and proper. Then $H^{*}(q):=\sup _{p \in \mathbb{R}^{n}}[\langle q, p\rangle-H(p)]$.

## Legendre transform

Let $H: \mathbb{R}^{n} \mapsto \mathbb{R}$ be convex, I.s.c and proper. Then $H^{*}(q):=\sup _{p \in \mathbb{R}^{n}}[\langle q, p\rangle-H(p)]$.


## Legendre transform

Let $H: \mathbb{R}^{n} \mapsto \mathbb{R}$ be convex, I.s.c and proper. Then $H^{*}(q):=\sup _{p \in \mathbb{R}^{n}}[\langle q, p\rangle-H(p)]$.


## General representation theorem

Candidate solution for the HJ equation $\quad$ We define $u(x):=\inf _{y \in \partial \Omega}\left[u_{b}(y)+\mathcal{L}(y, x)\right]$,

$$
\mathcal{L}(y, x):=\inf _{\substack{T>0, \gamma \in W^{1, \infty}([0, T], \Omega) \\ \gamma(0)=y, \gamma(T)=x}}\left[\int_{s=0}^{T}\left[n(\gamma(s))+H^{*}(\dot{\gamma}(s))\right] d s\right] .
$$

## General representation theorem

Candidate solution for the HJ equation $\quad$ We define $u(x):=\inf _{y \in \partial \Omega}\left[u_{b}(y)+\mathcal{L}(y, x)\right]$,

$$
\mathcal{L}(y, x):=\inf _{\substack{T>0, \gamma \in W^{1, \infty}([0, T], \Omega) \\ \gamma(0)=y, \gamma(T)=x}}\left[\int_{s=0}^{T}\left[n(\gamma(s))+H^{*}(\dot{\gamma}(s))\right] d s\right] .
$$

- The optical length $\mathcal{L}$ measures the space (generalization of $|y-x|$ ).


## General representation theorem

Candidate solution for the HJ equation We define $u(x):=\inf _{y \in \partial \Omega}\left[u_{b}(y)+\mathcal{L}(y, x)\right]$,

$$
\mathcal{L}(y, x):=\inf _{\substack{T>0, \gamma \in W^{1, \infty}([0, T], \Omega) \\ \gamma(0)=y, \gamma(T)=x}}\left[\int_{s=0}^{T}\left[n(\gamma(s))+H^{*}(\dot{\gamma}(s))\right] d s\right] .
$$

- The optical length $\mathcal{L}$ measures the space (generalization of $|y-x|$ ).
- The curves $\gamma$ play the role of characteristics, or optimal path, or geodesics.


## General representation theorem

Candidate solution for the HJ equation We define $u(x):=\inf _{y \in \partial \Omega}\left[u_{b}(y)+\mathcal{L}(y, x)\right]$,

$$
\mathcal{L}(y, x):=\inf _{\substack{T>0, \gamma \in W^{1, \infty}([0, T], \Omega) \\ \gamma(0)=y, \gamma(T)=x}}\left[\int_{s=0}^{T}\left[n(\gamma(s))+H^{*}(\dot{\gamma}(s))\right] d s\right] .
$$

- The optical length $\mathcal{L}$ measures the space (generalization of $|y-x|$ ).
- The curves $\gamma$ play the role of characteristics, or optimal path, or geodesics.
- The function $n$ acts as a weight on the space (better not go where $n$ is high).


## General representation theorem

Candidate solution for the HJ equation We define $u(x):=\inf _{y \in \partial \Omega}\left[u_{b}(y)+\mathcal{L}(y, x)\right]$,

$$
\mathcal{L}(y, x):=\inf _{\substack{T>0, \gamma \in W^{1, \infty}([0, T], \Omega) \\ \gamma(0)=y, \gamma(T)=x}}\left[\int_{s=0}^{T}\left[n(\gamma(s))+H^{*}(\dot{\gamma}(s))\right] d s\right] .
$$

- The optical length $\mathcal{L}$ measures the space (generalization of $|y-x|$ ).
- The curves $\gamma$ play the role of characteristics, or optimal path, or geodesics.
- The function $n$ acts as a weight on the space (better not go where $n$ is high).
- The convex dual $H^{*}$ controls which speeds $\dot{\gamma}$ are allowed (only in $\overline{\mathscr{B}(0,1)}$ in eikonal case).


## General representation theorem

Candidate solution for the HJ equation We define $u(x):=\inf _{y \in \partial \Omega}\left[u_{b}(y)+\mathcal{L}(y, x)\right]$,

$$
\mathcal{L}(y, x):=\inf _{\substack{T>0, \gamma \in W^{1, \infty}([0, T], \Omega) \\ \gamma(0)=y, \gamma(T)=x}}\left[\int_{s=0}^{T}\left[n(\gamma(s))+H^{*}(\dot{\gamma}(s))\right] d s\right] .
$$

- The optical length $\mathcal{L}$ measures the space (generalization of $|y-x|$ ).
- The curves $\gamma$ play the role of characteristics, or optimal path, or geodesics.
- The function $n$ acts as a weight on the space (better not go where $n$ is high).
- The convex dual $H^{*}$ controls which speeds $\dot{\gamma}$ are allowed (only in $\overline{\mathscr{B}}(0,1)$ in eikonal case).

Theorem - Oleĭnik-Hopf [Ole63, Hop65] The candidate $u$ is the viscosity solution.

## Table of Contents

```
Framework
    The eikonal equation
    Some words on viscosity (not a lot, I promise)
    OleĬnik
    Representation of the solution
    Extension to a general (convex) Hamiltonian
Some examples
    Running example
    Minimal distance to the boundary
```


## The toy problem (1/2)

Step 1 Compute the convex dual of $H(x, y)=x+|y|$.

$$
H^{*}(\alpha, \beta)=\max _{x, y \in \mathbb{R}^{2}} x \alpha+y \beta-(x+|y|)=\delta_{\{\alpha=1\}}+\delta_{\{|\beta| \leqslant 1\}}
$$

## The toy problem (1/2)

Step 1 Compute the convex dual of $H(x, y)=x+|y|$.

$$
H^{*}(\alpha, \beta)=\max _{x, y \in \mathbb{R}^{2}} x \alpha+y \beta-(x+|y|)=\delta_{\{\alpha=1\}}+\delta_{\{|\beta| \leqslant 1\}}
$$

Step 2 Compute the optical length from $(0, z)$ to $(x, y)$.

$$
\mathcal{L}((0, z),(x, y))=\inf _{T>0, \gamma:(0, z) \rightarrow(x, y)} \int_{0}^{T} 0+H^{*}(\dot{\gamma}(s)) d s= \begin{cases}0 & \text { if } \dot{\gamma} \in\{1\} \times[-1,1] \\ \infty & \text { otherwise }\end{cases}
$$

## The toy problem (1/2)

Step 1 Compute the convex dual of $H(x, y)=x+|y|$.

$$
H^{*}(\alpha, \beta)=\max _{x, y \in \mathbb{R}^{2}} x \alpha+y \beta-(x+|y|)=\delta_{\{\alpha=1\}}+\delta_{\{|\beta| \leqslant 1\}}
$$

Step 2 Compute the optical length from $(0, z)$ to $(x, y)$.

$$
\mathcal{L}((0, z),(x, y))=\inf _{T>0, \gamma:(0, z) \rightarrow(x, y)} \int_{0}^{T} 0+H^{*}(\dot{\gamma}(s)) d s= \begin{cases}0 & \text { if } z \in y+x[-1,1] \\ \infty & \text { otherwise }\end{cases}
$$

## The toy problem (1/2)

Step 1 Compute the convex dual of $H(x, y)=x+|y|$.

$$
H^{*}(\alpha, \beta)=\max _{x, y \in \mathbb{R}^{2}} x \alpha+y \beta-(x+|y|)=\delta_{\{\alpha=1\}}+\delta_{\{|\beta| \leqslant 1\}}
$$

Step 2 Compute the optical length from $(0, z)$ to $(x, y)$.

$$
\mathcal{L}((0, z),(x, y))=\inf _{T>0, \gamma:(0, z) \rightarrow(x, y)} \int_{0}^{T} 0+H^{*}(\dot{\gamma}(s)) d s= \begin{cases}0 & \text { if } z \in y+x[-1,1] \\ \infty & \text { otherwise }\end{cases}
$$

Step 3 Apply Lax-Oleĭnik formula:

$$
u(x, y)=\min _{(0, z) \in\{0\} \times \mathbb{R}}\left[u_{b}(0, z)+\mathcal{L}((0, z),(x, y))\right]=\min _{z \in y+x[-1,1]} e^{-z^{2}}=e^{-(|y|+x)^{2}}
$$

The toy problem (2/2)



## Some feeling-good pictures



Figure: Euclidian distance to \{circle, \} with \{null, \} boundary condition.

## Some feeling-good pictures




Figure: Euclidian distance to \{circle, trefle,
\} with $\{$ null, null,
\} boundary condition.

## Some feeling-good pictures





Figure: Euclidian distance to \{circle, trefle, circle\} with \{null, null, funny\} boundary condition.

## Critical boundary conditions for the eikonal equation



Figure: Boundary conditions that are $\{1$-lipschitz,

## Critical boundary conditions for the eikonal equation



Figure: Boundary conditions that are $\{1$-lipschitz, not 1-lipschitz,

## Critical boundary conditions for the eikonal equation





Figure: Boundary conditions that are $\{1$-lipschitz, not 1 -lipschitz, discontinuous $\}$.

## Thank you!

[Eva10] Lawrence C. Evans. Partial Differential Equations.
Number v. 19 in Graduate Studies in Mathematics. American Mathematical Society, Providence, R.I, 2nd ed edition, 2010.
[For22] Nicolas Forcadel.
Introduction aux équations non linéaires. Notes de cours, 2022.
[Hop65] Eberhard Hopf.
Generalized Solutions of Non-Linear Equations of First Order. Indiana Univ. Math. J., pages 951-973, 1965.
[Lio82] P. L. Lions.
Generalized Solutions of Hamilton-Jacobi Equations.
Number 69 in Research Notes in Mathematics. Pitman, Boston, 1982.
[Ole63] O. A. Oleĭnik.
Construction of a generalized solution of the Cauchy problem for a quasi-linear equation of first order by the introduction of 'vanishing viscosity'. Translated by George Birink.
Transl., Ser. 2, Am. Math. Soc., 33:277-283, 1963.

