The D in PDE

Strategies for first-order differentiation in the space of measures

Averil Prost

$$
\begin{aligned}
& \text { 引 } \\
& \overrightarrow{3} \\
& \overrightarrow{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\Xi & \exists \\
\exists & \exists
\end{array}
$$

$$
\equiv \equiv
$$

Let $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ be the space of (nonnegative Borel) probability measures on the space \mathbb{R}^{d} with

$$
\int_{x \in \mathbb{R}^{d}}|x|^{2} d \mu(x)<\infty
$$

Let $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ be the space of (nonnegative Borel) probability measures on the space \mathbb{R}^{d} with

$$
\int_{x \in \mathbb{R}^{d}}|x|^{2} d \mu(x)<\infty
$$

Aim For certain $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, give a meaning to $\partial_{\mu} u(\mu)$.

Let $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ be the space of (nonnegative Borel) probability measures on the space \mathbb{R}^{d} with

$$
\int_{x \in \mathbb{R}^{d}}|x|^{2} d \mu(x)<\infty
$$

Aim For certain $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, give a meaning to $\partial_{\mu} u(\mu)$.

For instance, we would like that the equation

$$
\partial_{t} u(t, \mu)+\left\langle\partial_{\mu} u(t, \mu), b\right\rangle=0, \quad u(0, \mu)=u_{0}(\mu)
$$

admits as solution $u(t, \mu)=u_{0}((i d-t b) \# \mu)$.

Let $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ be the space of (nonnegative Borel) probability measures on the space \mathbb{R}^{d} with

$$
\int_{x \in \mathbb{R}^{d}}|x|^{2} d \mu(x)<\infty
$$

Aim For certain $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, give a meaning to $\partial_{\mu} u(\mu)$.

For instance, we would like that the equation

$$
\partial_{t} u(t, \mu)+\left\langle\partial_{\mu} u(t, \mu), b\right\rangle=0, \quad u(0, \mu)=u_{0}(\mu)
$$

admits as solution $u(t, \mu)=u_{0}((i d-t b) \# \mu)$.

This talk will review the definitions of the literature, going from smoothest to most general.

Table of Contents

Starting point: distributions and the Otto calculus

Lifting: the Lions derivative
 Extrinsic formulation
 Intrinsic formulation

Geometric point of view: semidifferentials
The regular case
The general case
Insights from the metric point of view

Some definitions

Let $\mathcal{D}:=\mathcal{C}_{c}^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$. For each initial measure μ, denote $\left(\mu_{s}^{\mu, p}\right)_{s \geqslant 0}$ the unique solution of the continuity equation

$$
\partial_{s} \mu_{s}+\operatorname{div}\left(\nabla p \mu_{s}\right)=0, \quad \mu_{0}=\mu
$$

Some definitions

Let $\mathcal{D}:=\mathcal{C}_{c}^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$. For each initial measure μ, denote $\left(\mu_{s}^{\mu, p}\right)_{s \geqslant 0}$ the unique solution of the continuity equation

$$
\partial_{s} \mu_{s}+\operatorname{div}\left(\nabla p \mu_{s}\right)=0, \quad \mu_{0}=\mu
$$

Def 1 - Distributional derivative A map $u: \mathscr{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ admit a distributional derivative if there exist a distribution $\operatorname{grad}_{\mu} u \in \mathcal{D}^{\prime}$ such that for all $p \in \mathcal{D}$,

$$
\lim _{s \searrow 0} \frac{u\left(\mu_{s}^{\mu, p}\right)-u(\mu)}{s}=\left\langle\operatorname{grad}_{\mu} u(\mu), p\right\rangle_{\mathcal{D}^{\prime}, \mathcal{D}} .
$$

Some definitions

Let $\mathcal{D}:=\mathcal{C}_{c}^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$. For each initial measure μ, denote $\left(\mu_{s}^{\mu, p}\right)_{s \geqslant 0}$ the unique solution of the continuity equation

$$
\partial_{s} \mu_{s}+\operatorname{div}\left(\nabla p \mu_{s}\right)=0, \quad \mu_{0}=\mu
$$

Def 1 - Distributional derivative A map $u: \mathscr{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ admit a distributional derivative if there exist a distribution $\operatorname{grad}_{\mu} u \in \mathcal{D}^{\prime}$ such that for all $p \in \mathcal{D}$,

$$
\lim _{s \searrow 0} \frac{u\left(\mu_{s}^{\mu, p}\right)-u(\mu)}{s}=\left\langle\operatorname{grad}_{\mu} u(\mu), p\right\rangle_{\mathcal{D}^{\prime}, \mathcal{D}} .
$$

This definition is used in [FK09, FN12] to adress Hamilton-Jacobi equations.

Example: the linear map

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$.

Example: the linear map

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. If ℓ is Lipschitz and \mathcal{C}^{1}, then u is Lipschitz from $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ to \mathbb{R}, and
$\lim _{s \searrow 0} \frac{u\left(\mu_{s}^{\mu, p}\right)-u(\mu)}{s}=\lim _{s \searrow 0} \frac{u((i d+s \nabla p) \# \mu)-u(\mu)}{s}$

Example: the linear map

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. If ℓ is Lipschitz and \mathcal{C}^{1}, then u is Lipschitz from $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ to \mathbb{R}, and
$\lim _{s \searrow 0} \frac{u\left(\mu_{s}^{\mu, p}\right)-u(\mu)}{s}=\lim _{s \searrow 0} \frac{u((i d+s \nabla p) \# \mu)-u(\mu)}{s}=\lim _{s \searrow 0} \int_{x \in \mathbb{R}^{d}} \frac{\ell(x+s \nabla p(x))-\ell(x)}{s} d \mu(x)$

Example: the linear map

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. If ℓ is Lipschitz and \mathcal{C}^{1}, then u is Lipschitz from $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ to \mathbb{R}, and

$$
\begin{aligned}
\lim _{s \searrow 0} \frac{u\left(\mu_{s}^{\mu, p}\right)-u(\mu)}{s} & =\lim _{s \searrow 0} \frac{u((i d+s \nabla p) \# \mu)-u(\mu)}{s}=\lim _{s \searrow 0} \int_{x \in \mathbb{R}^{d}} \frac{\ell(x+s \nabla p(x))-\ell(x)}{s} d \mu(x) \\
& =\int_{x \in \mathbb{R}^{d}}\langle\nabla \ell(x), \nabla p(x)\rangle d \mu(x)
\end{aligned}
$$

Example: the linear map

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. If ℓ is Lipschitz and \mathcal{C}^{1}, then u is Lipschitz from $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ to \mathbb{R}, and

$$
\begin{aligned}
\lim _{s \searrow 0} \frac{u\left(\mu_{s}^{\mu, p}\right)-u(\mu)}{s} & =\lim _{s \searrow 0} \frac{u((i d+s \nabla p) \# \mu)-u(\mu)}{s}=\lim _{s \searrow 0} \int_{x \in \mathbb{R}^{d}} \frac{\ell(x+s \nabla p(x))-\ell(x)}{s} d \mu(x) \\
& =\int_{x \in \mathbb{R}^{d}}\langle\nabla \ell(x), \nabla p(x)\rangle d \mu(x)=-\langle\operatorname{div}(\mu \nabla \ell), p\rangle,
\end{aligned}
$$

so that the distributional derivative of u is the distribution $\operatorname{grad}_{\mu} u(\mu):=-\operatorname{div}(\mu \nabla \ell)$.

Example: the linear map

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. If ℓ is Lipschitz and \mathcal{C}^{1}, then u is Lipschitz from $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ to \mathbb{R}, and

$$
\begin{aligned}
\lim _{s \searrow 0} \frac{u\left(\mu_{s}^{\mu, p}\right)-u(\mu)}{s} & =\lim _{s \searrow 0} \frac{u((i d+s \nabla p) \# \mu)-u(\mu)}{s}=\lim _{s \searrow 0} \int_{x \in \mathbb{R}^{d}} \frac{\ell(x+s \nabla p(x))-\ell(x)}{s} d \mu(x) \\
& =\int_{x \in \mathbb{R}^{d}}\langle\nabla \ell(x), \nabla p(x)\rangle d \mu(x)=-\langle\operatorname{div}(\mu \nabla \ell), p\rangle,
\end{aligned}
$$

so that the distributional derivative of u is the distribution $\operatorname{grad}_{\mu} u(\mu):=-\operatorname{div}(\mu \nabla \ell)$.
Remark 1 - Meaning of the divergence Here $\operatorname{div}(\mu \cdot)$ is a notation for the adjoint operator of the gradient, i.e. $\langle\operatorname{div}(\mu F), p\rangle:=\langle F, \nabla p\rangle_{\mu}=\int_{x \in \mathbb{R}^{d}}\langle F(x), \nabla p(x)\rangle d \mu(x)$. In particular, if μ is the Lebesgue measure, it contains the boundary terms.

The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family三 of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].

The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family

回

 of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].Consider the map $u(\mu):=\int_{x \in \mathbb{R}^{d}} U(\rho(x)) d x$, where $\mu=\rho d x$. Denote $\mu_{t}=\rho(t, x) \nu$ the solution of $\partial_{t} \mu+\operatorname{div}(\mu \nabla p)=0$.

The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family

回

 of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].Consider the map $u(\mu):=\int_{x \in \mathbb{R}^{d}} U(\rho(x)) d x$, where $\mu=\rho d x$. Denote $\mu_{t}=\rho(t, x) \nu$ the solution of $\partial_{t} \mu+\operatorname{div}(\mu \nabla p)=0$. Then, at least formally,

$$
\frac{d}{d t}{ }_{\mid t=0} u\left(\mu_{t}\right)=\int_{x \in \mathbb{R}^{d}} U^{\prime}\left(\rho_{0}\right) \partial_{t} \rho_{0} d x
$$

The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family

回

 of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].Consider the map $u(\mu):=\int_{x \in \mathbb{R}^{d}} U(\rho(x)) d x$, where $\mu=\rho d x$. Denote $\mu_{t}=\rho(t, x) \nu$ the solution of $\partial_{t} \mu+\operatorname{div}(\mu \nabla p)=0$. Then, at least formally,

$$
\left.\frac{d}{d t} \right\rvert\, t=0 u\left(\mu_{t}\right)=\int_{x \in \mathbb{R}^{d}} U^{\prime}\left(\rho_{0}\right) \partial_{t} \rho_{0} d x=\int_{x \in \mathbb{R}^{d}} U^{\prime}\left(\rho_{0}\right)\left(-\operatorname{div}\left(\rho_{0} \nabla p\right)\right) d x
$$

The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family

目

 of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].Consider the map $u(\mu):=\int_{x \in \mathbb{R}^{d}} U(\rho(x)) d x$, where $\mu=\rho d x$. Denote $\mu_{t}=\rho(t, x) \nu$ the solution of $\partial_{t} \mu+\operatorname{div}(\mu \nabla p)=0$. Then, at least formally,

$$
\begin{aligned}
\left.\frac{d}{d t} \right\rvert\, t=0 u\left(\mu_{t}\right) & =\int_{x \in \mathbb{R}^{d}} U^{\prime}\left(\rho_{0}\right) \partial_{t} \rho_{0} d x=\int_{x \in \mathbb{R}^{d}} U^{\prime}\left(\rho_{0}\right)\left(-\operatorname{div}\left(\rho_{0} \nabla p\right)\right) d x \\
& =\int_{x \in \mathbb{R}^{d}}\left\langle\rho_{0} \nabla\left[U^{\prime} \circ \rho_{0}\right], \nabla p\right\rangle d x
\end{aligned}
$$

The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family

目

 of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].Consider the map $u(\mu):=\int_{x \in \mathbb{R}^{d}} U(\rho(x)) d x$, where $\mu=\rho d x$. Denote $\mu_{t}=\rho(t, x) \nu$ the solution of $\partial_{t} \mu+\operatorname{div}(\mu \nabla p)=0$. Then, at least formally,

$$
\begin{aligned}
\left.\frac{d}{d t} \right\rvert\, t=0 u\left(\mu_{t}\right) & =\int_{x \in \mathbb{R}^{d}} U^{\prime}\left(\rho_{0}\right) \partial_{t} \rho_{0} d x=\int_{x \in \mathbb{R}^{d}} U^{\prime}\left(\rho_{0}\right)\left(-\operatorname{div}\left(\rho_{0} \nabla p\right)\right) d x \\
& =\int_{x \in \mathbb{R}^{d}}\left\langle\rho_{0} \nabla\left[U^{\prime} \circ \rho_{0}\right], \nabla p\right\rangle d x=\int_{x \in \mathbb{R}^{d}}-\operatorname{div}\left(\rho_{0} \nabla\left[U^{\prime} \circ \rho_{0}\right]\right) p(x) d x
\end{aligned}
$$

The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family
三 of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].

Consider the map $u(\mu):=\int_{x \in \mathbb{R}^{d}} U(\rho(x)) d x$, where $\mu=\rho d x$. Denote $\mu_{t}=\rho(t, x) \nu$ the solution of $\partial_{t} \mu+\operatorname{div}(\mu \nabla p)=0$. Then, at least formally,

$$
\begin{aligned}
\left.\frac{d}{d t} \right\rvert\, t=0 u\left(\mu_{t}\right) & =\int_{x \in \mathbb{R}^{d}} U^{\prime}\left(\rho_{0}\right) \partial_{t} \rho_{0} d x=\int_{x \in \mathbb{R}^{d}} U^{\prime}\left(\rho_{0}\right)\left(-\operatorname{div}\left(\rho_{0} \nabla p\right)\right) d x \\
& =\int_{x \in \mathbb{R}^{d}}\left\langle\rho_{0} \nabla\left[U^{\prime} \circ \rho_{0}\right], \nabla p\right\rangle d x=\int_{x \in \mathbb{R}^{d}}-\operatorname{div}\left(\rho_{0} \nabla\left[U^{\prime} \circ \rho_{0}\right]\right) p(x) d x
\end{aligned}
$$

Hence $\operatorname{grad}_{\mu} u=-\operatorname{div}\left(\rho \nabla\left[U^{\prime} \circ \rho\right]\right)$. For instance, $U(r)=r \ln (r)$ gives $\operatorname{grad}_{\mu} u=-\Delta \rho(x)$.

Table of Contents

Starting point: distributions and the Otto calculus

Lifting: the Lions derivative
Extrinsic formulation
Intrinsic formulation

Geometric point of view: semidifferentials
The regular case
The general case

Insights from the metric point of view

The lift

History in two parts: the original extrinsic lifted formulation, and the (quite new) intrinsic one.

The lift

History in two parts: the original extrinsic lifted formulation, and the (quite new) intrinsic one.
Fundamental theorem of simulation (name from [BL94], [CD18a, Lemma 5.29]) Let $(\Omega, \mathcal{A}, \mathbb{P})$ be an atomless probability space, and $\mu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$. Then there exist $X \in L^{2}\left(\Omega, \mathcal{A}, \mathbb{P} ; \mathbb{R}^{d}\right)$ such that
the law of X is μ, \quad i.e. $\quad \mu=X \# \mathbb{P}, \quad$ i.e. $\quad \mu(A)=\mathbb{P}\left(X^{-1}(A)\right) \quad \forall A \in \mathcal{A}$.

The lift

History in two parts: the original extrinsic lifted formulation, and the (quite new) intrinsic one.
Fundamental theorem of simulation (name from [BL94], [CD18a, Lemma 5.29]) Let $(\Omega, \mathcal{A}, \mathbb{P})$ be an atomless probability space, and $\mu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$. Then there exist $X \in L^{2}\left(\Omega, \mathcal{A}, \mathbb{P} ; \mathbb{R}^{d}\right)$ such that
the law of X is μ, \quad i.e. $\quad \mu=X \# \mathbb{P}, \quad$ i.e. $\quad \mu(A)=\mathbb{P}\left(X^{-1}(A)\right) \quad \forall A \in \mathcal{A}$.

Def 2 - Lift Let $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$. Its lift is a map $U: L^{2}\left(\Omega, \mathcal{A}, \mathbb{P} ; \mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ given by

$$
U(X)=u(\mathcal{L}(\mathcal{X}))=u(X \# \mathbb{P})
$$

Gradient using the Hilbert structure

Def 3 - L-derivative Assume that U is F-differentiable in $L^{2}\left(\Omega, \mathcal{A}, \mathbb{P} ; \mathbb{R}^{d}\right)$. Then for all $\mu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$, there exist an element $\xi_{\mu} \in L_{\mu}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ such that

$$
\forall X \in L^{2}\left(\Omega, \mathcal{A}, \mathbb{P} ; \mathbb{R}^{d}\right) \text { s.t. } \mathcal{L}(X)=\mu, \quad \nabla U(X)(\omega)=\xi_{\mu}(X(\omega)) \quad \forall \omega \in \Omega
$$

We then denote $\partial_{\mu} u(\mu):=\xi_{\mu}$. (Here, $\partial_{\mu} u(\mu)$ is a function in $\left.L_{\mu}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right).\right)$

Gradient using the Hilbert structure

Def 3 - L-derivative Assume that U is F-differentiable in $L^{2}\left(\Omega, \mathcal{A}, \mathbb{P} ; \mathbb{R}^{d}\right)$. Then for all $\mu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$, there exist an element $\xi_{\mu} \in L_{\mu}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ such that

$$
\forall X \in L^{2}\left(\Omega, \mathcal{A}, \mathbb{P} ; \mathbb{R}^{d}\right) \text { s.t. } \mathcal{L}(X)=\mu, \quad \nabla U(X)(\omega)=\xi_{\mu}(X(\omega)) \quad \forall \omega \in \Omega
$$

We then denote $\partial_{\mu} u(\mu):=\xi_{\mu}$. (Here, $\partial_{\mu} u(\mu)$ is a function in $\left.L_{\mu}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right).\right)$

Idea launched by P.L. Lions in [Lio06], transcripted in [Car13]. Very popular notion, used (in particular) in [CCD15, PW17, PW18, BY19, CGK ${ }^{+} 22, \mathrm{CGK}^{+} 22, \mathrm{MZ22}$] to make the link between SDEs and PDEs, with focus on the master equation. Higher order derivatives are also defined (see [Sal23] for arbitrary order).

Example

Consider again $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. Then its lift U is defined as

$$
U(X)=\int_{\omega \in \Omega} \ell(X(\omega)) d \mathbb{P}(\omega) .
$$

Example

Consider again $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. Then its lift U is defined as

$$
U(X)=\int_{\omega \in \Omega} \ell(X(\omega)) d \mathbb{P}(\omega)
$$

If $\ell \in \mathcal{C}^{1}$ and Lipschitz, then

$$
\lim _{h \searrow 0} \frac{U(X+h Y)-U(X)}{h}=\int_{\omega \in \Omega}\langle\nabla \ell(X(\omega)), Y(\omega)\rangle d \mathbb{P}(\omega)=\langle\nabla \ell \circ X, Y\rangle_{L_{\mathbb{P}}^{2}}
$$

Example

Consider again $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. Then its lift U is defined as

$$
U(X)=\int_{\omega \in \Omega} \ell(X(\omega)) d \mathbb{P}(\omega)
$$

If $\ell \in \mathcal{C}^{1}$ and Lipschitz, then

$$
\lim _{h \searrow 0} \frac{U(X+h Y)-U(X)}{h}=\int_{\omega \in \Omega}\langle\nabla \ell(X(\omega)), Y(\omega)\rangle d \mathbb{P}(\omega)=\langle\nabla \ell \circ X, Y\rangle_{L_{\mathbb{P}}^{2}}
$$

Hence $D U(X)=\nabla \ell \circ X$, and $\partial_{\mu} u(\mu)=\nabla \ell: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ (here independant of μ).

Example

Consider again $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. Then its lift U is defined as

$$
U(X)=\int_{\omega \in \Omega} \ell(X(\omega)) d \mathbb{P}(\omega)
$$

If $\ell \in \mathcal{C}^{1}$ and Lipschitz, then

$$
\lim _{h \searrow 0} \frac{U(X+h Y)-U(X)}{h}=\int_{\omega \in \Omega}\langle\nabla \ell(X(\omega)), Y(\omega)\rangle d \mathbb{P}(\omega)=\langle\nabla \ell \circ X, Y\rangle_{L_{\mathbb{P}}^{2}}
$$

Hence $D U(X)=\nabla \ell \circ X$, and $\partial_{\mu} u(\mu)=\nabla \ell: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ (here independant of μ).
Remark 2 - Insatisfaction This "delocalization" procedure does not seem really natural.

The linear derivative

Def 4 - Linear derivative A map $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is said to admit a linear (functional) derivative if there exist a function $(\mu, x) \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ satisfying

- for all $\nu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right), \lim _{s \backslash 0} \frac{u(\mu+s(\nu-\mu))-u(\mu)}{s}=\int_{x \in \mathbb{R}^{d} \delta} \frac{\delta u}{\delta \mu}(\mu, x) d[\nu-\mu](x)$,

The linear derivative

Def 4 - Linear derivative A map $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is said to admit a linear (functional) derivative if there exist a function $(\mu, x) \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ satisfying

- for all $\nu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right), \lim _{s \searrow 0} \frac{u(\mu+s(\nu-\mu))-u(\mu)}{s}=\int_{x \in \mathbb{R}^{d}} \frac{\delta u}{\delta \mu}(\mu, x) d[\nu-\mu](x)$,
- the normalizing convention $\int_{x \in \mathbb{R}^{d}} \frac{\delta u}{\delta \mu}(\mu, x) d \mu(x)=0$.

The linear derivative

Def 4 - Linear derivative A map $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is said to admit a linear (functional) derivative if there exist a function $(\mu, x) \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ satisfying

- for all $\nu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right), \lim _{s ~}^{\searrow} 00 \frac{u(\mu+s(\nu-\mu))-u(\mu)}{s}=\int_{x \in \mathbb{R}^{d}} \frac{\delta u}{\delta \mu}(\mu, x) d[\nu-\mu](x)$,
- the normalizing convention $\int_{x \in \mathbb{R}^{d}} \frac{\delta u}{\delta \mu}(\mu, x) d \mu(x)=0$.

This formulation goes back to Fleming-Viot processes [FV79], and is used outside of the Wasserstein context (see [CLS18] for references). It corresponds to the Fréchet derivative in the Banach space $\left(\mathcal{M},|\cdot|_{T V}\right)$, restricted to $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$. Used in viscosity [BIRS19] and for the master equation [CD18a, CDLL19].

Example and chain rule

Let $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. Then one simply has

$$
\frac{u(\mu+s(\nu-\mu))-u(\mu)}{s}=\int_{x \in \mathbb{R}^{d}} \ell(x) d[\nu-\mu](x),
$$

Example and chain rule

Let $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. Then one simply has

$$
\frac{u(\mu+s(\nu-\mu))-u(\mu)}{s}=\int_{x \in \mathbb{R}^{d}} \ell(x) d[\nu-\mu](x),
$$

so that $\frac{\delta u}{\delta \mu}(\mu, x)=\ell(x)-\langle\ell, \mu\rangle$ (for the normalization).

Example and chain rule

Let $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$. Then one simply has

$$
\frac{u(\mu+s(\nu-\mu))-u(\mu)}{s}=\int_{x \in \mathbb{R}^{d}} \ell(x) d[\nu-\mu](x),
$$

so that $\frac{\delta u}{\delta \mu}(\mu, x)=\ell(x)-\langle\ell, \mu\rangle$ (for the normalization).

Chain rule 1 If $(x, \mu) \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ is Lipschitz in $\mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d}$ and the curve $\left(\mu_{t}\right)_{t \in[0, T]} \subset \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ is Lipschitz in time, then

$$
u\left(\mu_{T}\right)-u\left(\mu_{0}\right)=\int_{t=0}^{T}\left\langle\frac{\delta u}{\delta \mu}\left(\mu_{t}, \cdot\right), \partial_{t} \mu_{t}\right\rangle d t
$$

The (natural) derivative

Def 5 - Natural derivative Assume that $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ admits a linear derivative that is jointly continuous, and such that for all fixed $\mu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$, the map $x \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ is differentiable in \mathbb{R}^{d}. Then one defines the natural derivative of u as

$$
D_{\mu} u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \quad D_{\mu} u(\mu, x)=\nabla_{x} \frac{\delta u}{\delta \mu}(\mu, x)
$$

The (natural) derivative

Def 5 - Natural derivative Assume that $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ admits a linear derivative that is jointly continuous, and such that for all fixed $\mu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$, the map $x \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ is differentiable in \mathbb{R}^{d}. Then one defines the natural derivative of u as

$$
D_{\mu} u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \quad D_{\mu} u(\mu, x)=\nabla_{x} \frac{\delta u}{\delta \mu}(\mu, x)
$$

The notations are taken from [CD18a, CD18b], and this definition is used in [CDLL19]. The terminology is not clear, and we called $D_{\mu} u$ "natural derivative" in waiting of a better name.

Example and chain rule

According to Frame 12, the map $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$ has a linear derivative $\frac{\delta u}{\delta \mu}(\mu, x)=\ell(x)-\langle\ell, \mu\rangle$. Hence we directly have

$$
D_{\mu} u(\mu, x)=\nabla_{x} \frac{\delta u}{\delta \mu}(\mu, x)=\nabla \ell(x)
$$

Example and chain rule

According to Frame 12, the map $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$ has a linear derivative $\frac{\delta u}{\delta \mu}(\mu, x)=\ell(x)-\langle\ell, \mu\rangle$. Hence we directly have

$$
D_{\mu} u(\mu, x)=\nabla_{x} \frac{\delta u}{\delta \mu}(\mu, x)=\nabla \ell(x)
$$

Chain rule 2 Assume that $D_{\mu} u(\mu)$ is jointly continuous, and let the measure curve $\left(\mu_{t}\right)_{t \in[0, T]}$ solve $\partial_{t} \mu_{t}=-\operatorname{div}\left(g\left(t, \cdot, \mu_{t}\right) \# \mu_{t}\right)$. Then, from $(\mathrm{CR}-\delta / \delta \mu)$, we obtain

$$
\begin{aligned}
u\left(\mu_{T}\right)-u\left(\mu_{0}\right) & =\int_{t=0}^{T}\left\langle\nabla_{x} \frac{\delta u}{\delta \mu}(\mu, x), g\left(t, \cdot, \mu_{t}\right)\right\rangle_{\mu_{t}} d t \\
& =\int_{t=0}^{T} \int_{x \in \mathbb{R}^{d}}\left\langle D_{\mu} u\left(\mu_{t}, x\right), g\left(t, x, \mu_{t}\right)\right\rangle d \mu_{t}(x) d t .
\end{aligned}
$$

Links

Link ([CD18a, Prop. 5.48] and [CDLL19, Appx A]) Let $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, and assume that either

- u admits a jointly continuous Lions-differential $\partial_{\mu} u$ in the sense of Def 3 that has linear growth in x uniformly in μ,
- u admits a jointly continuous natural derivative $D_{\mu} u$ in the sense of Def 5 that has linear growth in x uniformly in μ.
Then the other point stands and

$$
\partial_{\mu} u(\mu, x)=D_{\mu} u(\mu, x) \quad \forall(\mu, x) \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d}
$$

Hence the two definitions are gathered under the vocabulary of "Lions differentiability".

Table of Contents

Starting point: distributions and the Otto calculus

Lifting: the Lions derivative
Extrinsic formulation
Intrinsic formulation
Geometric point of view: semidifferentials
The regular case
The general case
Insights from the metric point of view

The regular case

Define a family of "tangent vectors" to μ as

$$
T_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right):=\overline{\left\{\nabla \varphi \mid \varphi \in \mathcal{C}_{c}^{1}\left(\mathbb{R}^{d} ; \mathbb{R}\right)\right\}^{L_{\mu}^{2}}} .
$$

The regular case

Define a family of "tangent vectors" to μ as

$$
T_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right):={\overline{\left\{\nabla \varphi \mid \varphi \in \mathcal{C}_{c}^{1}\left(\mathbb{R}^{d} ; \mathbb{R}\right)\right\}}}^{L_{\mu}^{2}}
$$

Def 6 - Regular semidifferentials Let $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ and $\mu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$. An element $\xi \in T_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ is said to belong to the subdifferential of u at μ if for all $\nu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$,

$$
u(\nu)-u(\mu) \geqslant \sup _{\eta \in \Gamma_{o}(\mu, \nu)} \int_{(x, y) \in\left(\mathbb{R}^{d}\right)^{2}}\langle\xi(x), y-x\rangle d \eta(x, y)+o\left(d_{\mathcal{W}}(\mu, \nu)\right)
$$

The set of such ξ is denoted $\partial . u(\mu)$. The superdifferential writes $\partial \cdot u(\mu):=-\partial .(-u)(\mu)$.

The regular case

Define a family of "tangent vectors" to μ as

$$
T_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right):=\overline{\left\{\nabla \varphi \mid \varphi \in \mathcal{C}_{c}^{1}\left(\mathbb{R}^{d} ; \mathbb{R}\right)\right\}^{L}}{ }^{2}
$$

Def 6 - Regular semidifferentials Let $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ and $\mu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$. An element $\xi \in T_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ is said to belong to the subdifferential of u at μ if for all $\nu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$,

$$
u(\nu)-u(\mu) \geqslant \sup _{\eta \in \Gamma_{o}(\mu, \nu)} \int_{(x, y) \in\left(\mathbb{R}^{d}\right)^{2}}\langle\xi(x), y-x\rangle d \eta(x, y)+o\left(d_{\mathcal{W}}(\mu, \nu)\right)
$$

The set of such ξ is denoted $\partial . u(\mu)$. The superdifferential writes $\partial \cdot u(\mu):=-\partial .(-u)(\mu)$.

E This definition inspired the δ-semidifferentials of [CQ08, MQ18, JMQ20, JMQ22].

Example

Let $u(\mu)=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$, and assume that $\ell \in \mathcal{C}^{1}$ is λ-semiconvex, i.e.

$$
\ell(y)-\ell(x) \geqslant\langle\nabla \ell(x), y-x\rangle-\frac{\lambda}{2}|y-x|^{2}
$$

Example

Let $u(\mu)=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$, and assume that $\ell \in \mathcal{C}^{1}$ is λ-semiconvex, i.e.

$$
\ell(y)-\ell(x) \geqslant\langle\nabla \ell(x), y-x\rangle-\frac{\lambda}{2}|y-x|^{2}
$$

Then, for any $(\mu, \nu) \in\left(\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)\right)^{2}$, integrating the above against $\eta \in \Gamma_{o}(\mu, \nu)$ yields

$$
\underbrace{\int_{y \in \mathbb{R}^{d}} \ell(y) d \nu(y)}_{u(\nu)}-\underbrace{\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)}_{u(\mu)} \geqslant \int_{(x, y) \in\left(\mathbb{R}^{d}\right)^{2}}\langle\nabla \ell(x), y-x\rangle d \eta(x, y)-\frac{\lambda}{2} d_{\mathcal{W}}^{2}(\mu, \nu)
$$

Example

Let $u(\mu)=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$, and assume that $\ell \in \mathcal{C}^{1}$ is λ-semiconvex, i.e.

$$
\ell(y)-\ell(x) \geqslant\langle\nabla \ell(x), y-x\rangle-\frac{\lambda}{2}|y-x|^{2} .
$$

Then, for any $(\mu, \nu) \in\left(\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)\right)^{2}$, integrating the above against $\eta \in \Gamma_{o}(\mu, \nu)$ yields

$$
\underbrace{\int_{y \in \mathbb{R}^{d}} \ell(y) d \nu(y)}_{u(\nu)}-\underbrace{\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)}_{u(\mu)} \geqslant \int_{(x, y) \in\left(\mathbb{R}^{d}\right)^{2}}\langle\nabla \ell(x), y-x\rangle d \eta(x, y)-\frac{\lambda}{2} d_{\mathcal{W}}^{2}(\mu, \nu) .
$$

Since η is arbitrary, we conclude that $x \mapsto \nabla \ell(x)$ belongs to the subdifferential of u at μ.

Link with the Lions differentiability

Def 7 - W-differential Let $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ such that $\partial . u(\mu) \neq \emptyset$ and $\partial \cdot u(\mu) \neq \emptyset$. Then $\partial . u(\mu)=\partial \cdot u(\mu)=\{\xi\}$, and the Wasserstein gradient of u at μ is $\nabla_{W} u(\mu):=\xi$.

Link with the Lions differentiability

Def 7 - W-differential Let $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ such that $\partial . u(\mu) \neq \emptyset$ and $\partial \cdot u(\mu) \neq \emptyset$. Then $\partial . u(\mu)=\partial \cdot u(\mu)=\{\xi\}$, and the Wasserstein gradient of u at μ is $\nabla_{W} u(\mu):=\xi$.

The map u admits a W -gradient $\nabla_{W} u(\mu)$ at μ if and only if its lift $U(X):=u(\mathcal{L}(X))$ is differentiable at some X such that $\mathcal{L}(X)=\mu$. In this case, one has $\nabla_{W} u(\mu)=\partial_{\mu} u(\mu)$.

Link with the Lions differentiability

Def 7 - W-differential Let $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ such that $\partial . u(\mu) \neq \emptyset$ and $\partial \cdot u(\mu) \neq \emptyset$. Then $\partial . u(\mu)=\partial \cdot u(\mu)=\{\xi\}$, and the Wasserstein gradient of u at μ is $\nabla_{W} u(\mu):=\xi$.

The map u admits a W -gradient $\nabla_{W} u(\mu)$ at μ if and only if its lift $U(X):=u(\mathcal{L}(X))$ is differentiable at some X such that $\mathcal{L}(X)=\mu$. In this case, one has $\nabla_{W} u(\mu)=\partial_{\mu} u(\mu)$.

The geometric approach of Wasserstein gradients originated in [AGS05], followed by [GNT08]. [AG08, GŚ14] make a direct use of this definition in viscosity solutions. The above link was shown in [GT19, Corollary 3.22] (see also [CD18a, Theorem 5.64]).

The general tangent cone
Problem: the regular tangent cone does not split mass.

The general tangent cone

Problem: the regular tangent cone does not split mass. Define the general tangent cone as

$$
\boldsymbol{T}_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right):=\overline{\left\{\xi \in \mathscr{P}\left(T \mathbb{R}^{d}\right)_{\mu} \mid \exists \varepsilon>0, t \mapsto \exp _{\mu}(t \cdot \xi) \text { is a geodesic on } t \in[0, \varepsilon]\right\}^{W_{\mu}}, ~}
$$

where $W_{\mu}(\xi, \eta):=\int_{x \in \mathbb{R}^{d}} d_{\mathcal{W}}\left(\xi_{x}, \eta_{x}\right) d \mu(x)$ is a generalization of the L_{μ}^{2} distance on plans.

The general tangent cone

Problem: the regular tangent cone does not split mass. Define the general tangent cone as

$$
\boldsymbol{T}_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right):=\overline{\left\{\xi \in \mathscr{P}\left(T \mathbb{R}^{d}\right)_{\mu} \mid \exists \varepsilon>0, t \mapsto \exp _{\mu}(t \cdot \xi) \text { is a geodesic on } t \in[0, \varepsilon]\right\}^{W_{\mu}}}
$$

where $W_{\mu}(\xi, \eta):=\int_{x \in \mathbb{R}^{d}} d_{\mathcal{W}}\left(\xi_{x}, \eta_{x}\right) d \mu(x)$ is a generalization of the L_{μ}^{2} distance on plans.

The general tangent cone

Problem: the regular tangent cone does not split mass. Define the general tangent cone as

$$
\boldsymbol{T}_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right):=\overline{\left\{\xi \in \mathscr{P}\left(T \mathbb{R}^{d}\right)_{\mu} \mid \exists \varepsilon>0, t \mapsto \exp _{\mu}(t \cdot \xi) \text { is a geodesic on } t \in[0, \varepsilon]\right\}^{W_{\mu}},}
$$

where $W_{\mu}(\xi, \eta):=\int_{x \in \mathbb{R}^{d}} d_{\mathcal{W}}\left(\xi_{x}, \eta_{x}\right) d \mu(x)$ is a generalization of the L_{μ}^{2} distance on plans.

The general tangent cone

Problem: the regular tangent cone does not split mass. Define the general tangent cone as

$$
\boldsymbol{T}_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right):=\overline{\left\{\xi \in \mathscr{P}\left(T \mathbb{R}^{d}\right)_{\mu} \mid \exists \varepsilon>0, t \mapsto \exp _{\mu}(t \cdot \xi) \text { is a geodesic on } t \in[0, \varepsilon]\right\}^{W_{\mu}},}
$$

where $W_{\mu}(\xi, \eta):=\int_{x \in \mathbb{R}^{d}} d_{\mathcal{W}}\left(\xi_{x}, \eta_{x}\right) d \mu(x)$ is a generalization of the L_{μ}^{2} distance on plans.

Generalized semidifferentials

For any $\xi \in \boldsymbol{T}_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\nu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$, denote $\Gamma_{o}(\xi, \nu)$ the set of plans

$$
\eta \in \mathscr{P}\left(\left\{\left(x, v_{1}, v_{2}\right) \mid x \in \mathbb{R}^{d}, v_{i} \in T_{x} \mathbb{R}^{d}\right\}\right) \quad \text { s.t. } \quad\left\{\begin{array}{l}
\pi_{x, v_{1}} \# \eta=\xi \\
\left(\pi_{x}, \pi_{x}+\pi_{v_{2}}\right) \# \eta \in \Gamma_{o}(\mu, \nu)
\end{array}\right.
$$

Generalized semidifferentials

For any $\xi \in \boldsymbol{T}_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\nu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$, denote $\Gamma_{o}(\xi, \nu)$ the set of plans

$$
\eta \in \mathscr{P}\left(\left\{\left(x, v_{1}, v_{2}\right) \mid x \in \mathbb{R}^{d}, v_{i} \in T_{x} \mathbb{R}^{d}\right\}\right) \quad \text { s.t. } \quad\left\{\begin{array}{l}
\pi_{x, v_{1}} \# \eta=\xi \\
\left(\pi_{x}, \pi_{x}+\pi_{v_{2}}\right) \# \eta \in \Gamma_{o}(\mu, \nu)
\end{array}\right.
$$

Def 8 Let $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ and $\mu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$. A tangent vector $\xi \in \boldsymbol{T}_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ belongs to the generalized subdifferential of u at μ, denoted $\boldsymbol{\partial} . u(\mu)$, if for all $\nu \in \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$,

$$
u(\nu)-u(\mu) \geqslant \sup _{\eta \in \Gamma_{o}(\xi, \nu)} \int_{x \in \mathbb{R}^{d},\left(v_{1}, v_{2}\right) \in\left(T_{x} \mathbb{R}^{d}\right)^{2}}\left\langle v_{1}, v_{2}\right\rangle d \eta\left(x, v_{1}, v_{2}\right)+o\left(d_{\mathcal{W}}(\mu, \nu)\right)
$$

The generalized superdifferential is defined as $\boldsymbol{\partial} \cdot u(\mu):=-\boldsymbol{\partial} \cdot(-u)(\mu)$.

Example

Let $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$, and assume that ℓ is λ-semiconvex (but not \mathcal{C}^{1} anymore). Denote $\partial_{x} \ell$ the subdifferential of ℓ at x (a set of vectors).

Example

Let $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$, and assume that ℓ is λ-semiconvex (but not \mathcal{C}^{1} anymore). Denote $\partial_{x} \ell$ the subdifferential of ℓ at x (a set of vectors). Let $\xi \in \mathscr{P}\left(\bigcup_{x \in \mathbb{R}^{d}}\{x\} \times \partial_{x} \ell\right)$ be such that $\pi_{x} \# \xi=\mu$ (ξ only gives mass to the subdifferential of ℓ). Then, for any $x \in \mathbb{R}^{d}$, any $v_{1} \in \partial_{x} \ell$ and any $v_{2} \in T_{x} \mathbb{R}^{d}$,

$$
\ell\left(x+v_{2}\right)-\ell(x) \geqslant\left\langle v_{1}, v_{2}\right\rangle-\frac{\lambda}{2}\left|v_{2}\right|^{2} .
$$

Example

Let $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$, and assume that ℓ is λ-semiconvex (but not \mathcal{C}^{1} anymore). Denote $\partial_{x} \ell$ the subdifferential of ℓ at x (a set of vectors). Let $\xi \in \mathscr{P}\left(\bigcup_{x \in \mathbb{R}^{d}}\{x\} \times \partial_{x} \ell\right)$ be such that $\pi_{x} \# \xi=\mu(\xi$ only gives mass to the subdifferential of $\ell)$. Then, for any $x \in \mathbb{R}^{d}$, any $v_{1} \in \partial_{x} \ell$ and any $v_{2} \in T_{x} \mathbb{R}^{d}$,

$$
\ell\left(x+v_{2}\right)-\ell(x) \geqslant\left\langle v_{1}, v_{2}\right\rangle-\frac{\lambda}{2}\left|v_{2}\right|^{2}
$$

Let $(\mu, \nu) \in\left(\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)\right)^{2}$, and $\eta \in \Gamma_{o}(\xi, \nu)$. Integrating the above against η,

$$
u(\nu)-u(\mu) \geqslant \int_{x \in \mathbb{R}^{d},\left(v_{1}, v_{2}\right) \in\left(T_{x} \mathbb{R}^{d}\right)^{2}}\left\langle v_{1}, v_{2}\right\rangle d \eta\left(x, v_{1}, v_{2}\right)-\frac{\lambda}{2} d_{\mathcal{W}}^{2}(\mu, \nu) .
$$

Example

Let $u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x)$, and assume that ℓ is λ-semiconvex (but not \mathcal{C}^{1} anymore). Denote $\partial_{x} \ell$ the subdifferential of ℓ at x (a set of vectors). Let $\xi \in \mathscr{P}\left(\bigcup_{x \in \mathbb{R}^{d}}\{x\} \times \partial_{x} \ell\right)$ be such that $\pi_{x} \# \xi=\mu(\xi$ only gives mass to the subdifferential of $\ell)$. Then, for any $x \in \mathbb{R}^{d}$, any $v_{1} \in \partial_{x} \ell$ and any $v_{2} \in T_{x} \mathbb{R}^{d}$,

$$
\ell\left(x+v_{2}\right)-\ell(x) \geqslant\left\langle v_{1}, v_{2}\right\rangle-\frac{\lambda}{2}\left|v_{2}\right|^{2}
$$

Let $(\mu, \nu) \in\left(\mathscr{P}_{2}\left(\mathbb{R}^{d}\right)\right)^{2}$, and $\eta \in \Gamma_{o}(\xi, \nu)$. Integrating the above against η,

$$
u(\nu)-u(\mu) \geqslant \int_{x \in \mathbb{R}^{d},\left(v_{1}, v_{2}\right) \in\left(T_{x} \mathbb{R}^{d}\right)^{2}}\left\langle v_{1}, v_{2}\right\rangle d \eta\left(x, v_{1}, v_{2}\right)-\frac{\lambda}{2} d_{\mathcal{W}}^{2}(\mu, \nu)
$$

Since η is arbitrary, we obtain that $\xi \in \boldsymbol{\partial} . u(\mu)$.

Table of Contents

Starting point: distributions and the Otto calculus

Lifting: the Lions derivative

Extrinsic formulation

Intrinsic formulation

Geometric point of view: semidifferentials

The regular case
The general case
Insights from the metric point of view

Differentiate in length spaces

Def 9 - Metric slope Let (X, d) be a metric space. The metric slope of a map u : $X \rightarrow \mathbb{R}$ at the point x is given by

$$
|\nabla u(x)|:=\varlimsup_{y \rightarrow x} \frac{|u(y)-u(x)|}{d(x, y)}
$$

Differentiate in length spaces

Def 9 - Metric slope Let (X, d) be a metric space. The metric slope of a map u : $X \rightarrow \mathbb{R}$ at the point x is given by

$$
|\nabla u(x)|:=\varlimsup_{y \rightarrow x} \frac{|u(y)-u(x)|}{d(x, y)}
$$

Metric slopes are used to formulate equations in (length) metric spaces, for instance in三 [AGS05, Vil09, Oht09] on gradient flows, of [GNT08, HK15, GŚ15a, GŚ15b, GHN15] on eikonal-type equations.

Differentiate in length spaces

Def 9 - Metric slope Let (X, d) be a metric space. The metric slope of a map u : $X \rightarrow \mathbb{R}$ at the point x is given by

$$
|\nabla u(x)|:=\varlimsup_{y \rightarrow x} \frac{|u(y)-u(x)|}{d(x, y)}
$$

Metric slopes are used to formulate equations in (length) metric spaces, for instance in = [AGS05, Vil09, Oht09] on gradient flows, of [GNT08, HK15, GŚ15a, GŚ15b, GHN15] on eikonal-type equations.
(Last) example: let $u(\mu)=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu$ with $\ell \in \mathcal{C}_{b}^{2}$. Then $\left|\nabla^{+} u(\mu)\right|=\int_{x \in \mathbb{R}^{d}}|\nabla \ell(x)| d \mu(x)$.

Gradient flows

In [AGS05], general gradient flows are studied in metric spaces. They want to give a meaning to curves satisfying

$$
\frac{d}{d t} y(t)=-\nabla \Phi(y(t)), \quad y(0)=y_{0}
$$

${ }^{1}$ Under the assumptions of [AGS05, Theorem 11.3.2].

Gradient flows

In [AGS05], general gradient flows are studied in metric spaces. They want to give a meaning to curves satisfying

$$
\frac{d}{d t} y(t)=-\nabla \Phi(y(t)), \quad y(0)=y_{0} .
$$

To this aim, a numerical scheme is designed, and an approximating sequence $\left(y^{N}\right)_{N}$ is computed. In the case of the Wasserstein space, Ambrosio, Gigli and Savaré showed that ${ }^{1}$

- the limit \bar{y} exists and satisfies an axiomatic definition of gradient curve,
${ }^{1}$ Under the assumptions of [AGS05, Theorem 11.3.2].

Gradient flows

In [AGS05], general gradient flows are studied in metric spaces. They want to give a meaning to curves satisfying

$$
\frac{d}{d t} y(t)=-\nabla \Phi(y(t)), \quad y(0)=y_{0} .
$$

To this aim, a numerical scheme is designed, and an approximating sequence $\left(y^{N}\right)_{N}$ is computed. In the case of the Wasserstein space, Ambrosio, Gigli and Savaré showed that ${ }^{1}$

- the limit \bar{y} exists and satisfies an axiomatic definition of gradient curve,
- an appropriate generalization of $\frac{d}{d t} \bar{y}(t)$ converges to an element of $\boldsymbol{\partial} . \Phi(\bar{y}(t))$.

[^0]
Gradient flows

In [AGS05], general gradient flows are studied in metric spaces. They want to give a meaning to curves satisfying

$$
\frac{d}{d t} y(t)=-\nabla \Phi(y(t)), \quad y(0)=y_{0} .
$$

To this aim, a numerical scheme is designed, and an approximating sequence $\left(y^{N}\right)_{N}$ is computed. In the case of the Wasserstein space, Ambrosio, Gigli and Savaré showed that ${ }^{1}$

- the limit \bar{y} exists and satisfies an axiomatic definition of gradient curve,
- an appropriate generalization of $\frac{d}{d t} \bar{y}(t)$ converges to an element of $\boldsymbol{\partial}$. $\Phi(\bar{y}(t))$.

The regular tangent space $\partial . \Phi$ may be two small (case of $\Phi=d_{\mathcal{W}}^{2}(\cdot, \sigma)$ for instance).

[^1]
Eikonal-type equations (HJ depending only on the norm of ∇u)

Canonical example: a minimal time problem

$$
-\partial_{t} u(t, \mu)+\frac{1}{2}\left|\nabla^{+} u(t, \mu)\right|^{2}=1, \quad u(T, \mu)=0 .
$$

Eikonal-type equations (HJ depending only on the norm of ∇u)

Canonical example: a minimal time problem

$$
-\partial_{t} u(t, \mu)+\frac{1}{2}\left|\nabla^{+} u(t, \mu)\right|^{2}=1, \quad u(T, \mu)=0
$$

In [AF14], such equations is studied in geodesic/length spaces by first using metric slopes. They show that

- a definition of viscosity using the generalized semidifferentials is compatible with their metric definition (a solution for the former is a solution for the latter).

Eikonal-type equations (HJ depending only on the norm of ∇u)

Canonical example: a minimal time problem

$$
-\partial_{t} u(t, \mu)+\frac{1}{2}\left|\nabla^{+} u(t, \mu)\right|^{2}=1, \quad u(T, \mu)=0
$$

In [AF14], such equations is studied in geodesic/length spaces by first using metric slopes. They show that

- a definition of viscosity using the generalized semidifferentials is compatible with their metric definition (a solution for the former is a solution for the latter).
- it is no longer the case when restricted to the regular semidifferentials.

Eikonal-type equations (HJ depending only on the norm of ∇u)

Canonical example: a minimal time problem

$$
-\partial_{t} u(t, \mu)+\frac{1}{2}\left|\nabla^{+} u(t, \mu)\right|^{2}=1, \quad u(T, \mu)=0
$$

In [AF14], such equations is studied in geodesic/length spaces by first using metric slopes.
They show that

- a definition of viscosity using the generalized semidifferentials is compatible with their metric definition (a solution for the former is a solution for the latter).
- it is no longer the case when restricted to the regular semidifferentials.

The construction of generalized subdifferentials in [AF14] is linked to the tangent cone for curved spaces, explored for the Wasserstein case in [Gig08] (see [AKP22] for material on curved spaces).

The derivatives of the linear map in one glance

Recall that $u: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$ is defined as

$$
u(\mu):=\int_{x \in \mathbb{R}^{d}} \ell(x) d \mu(x) .
$$

Distributional derivative	Lions derivative	Linear derivative	Natural derivative	Regular subdifferential	General subdifferential
$\operatorname{grad}_{\mu} u(\mu)$	$\partial_{\mu} u(\mu)$	$\frac{\delta u}{\delta \mu}(\mu, \cdot)$	$D_{\mu} u(\mu, \cdot)$	$\partial . u(\mu), \nabla_{\mathrm{w}} u$	$\partial . u(\mu)$
$-\operatorname{div}(\mu \nabla \ell)$	$\nabla \ell$	ℓ	$\nabla \ell$	$\nabla \ell$ select ${ }^{\circ}$ of $\partial \ell$	$\nabla \ell \# \mu$, $\mathscr{P}(G r(\partial \ell))$
distribution, duality with	element of $L_{c}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$	element of $L_{\mu}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$	element of $L_{\mu}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$	element of $T_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$	element of $T_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$

Conclusion

- The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for instance the master equation with smooth coefficients), and emerges naturally from the modelization.

Conclusion

- The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for instance the master equation with smooth coefficients), and emerges naturally from the modelization.
- The W-differentiability, constructed in a more geometric fashion, has been reconciled with the L-differentiability since they coincide on sufficiently smooth functions.

Conclusion

- The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for instance the master equation with smooth coefficients), and emerges naturally from the modelization.
- The W-differentiability, constructed in a more geometric fashion, has been reconciled with the L-differentiability since they coincide on sufficiently smooth functions.
- Whenever the map u is not differentiable, generalized subdifferentials (although less maniable) are more suited than regular ones.

Conclusion

- The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for instance the master equation with smooth coefficients), and emerges naturally from the modelization.
- The W-differentiability, constructed in a more geometric fashion, has been reconciled with the L-differentiability since they coincide on sufficiently smooth functions.
- Whenever the map u is not differentiable, generalized subdifferentials (although less maniable) are more suited than regular ones.
Open questions:
- How to get out of vector spaces?

Conclusion

- The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for instance the master equation with smooth coefficients), and emerges naturally from the modelization.
- The W-differentiability, constructed in a more geometric fashion, has been reconciled with the L-differentiability since they coincide on sufficiently smooth functions.
- Whenever the map u is not differentiable, generalized subdifferentials (although less maniable) are more suited than regular ones.
Open questions:
- How to get out of vector spaces?
- Is there an existence theorem to dig for continuity equations written as $\partial_{t} \mu_{t}=-\operatorname{div}\left(\mu_{t} F\left(\mu_{t}\right)\right)$, where $F\left[\mu_{t}\right]$ is a plan in $T_{\mu} \mathscr{P}_{2}\left(\mathbb{R}^{d}\right)$? Can this be posed pointwise in time, and under which condition does existence hold?

Thank you!

[AF14] Luigi Ambrosio and Jin Feng.
On a class of first order Hamilton-Jacobi equations in metric spaces. Journal of Differential Equations, 256(7):2194-2245, April 2014.
[AG08] Luigi Ambrosio and Wilfrid Gangbo.
Hamiltonian ODEs in the Wasserstein space of probability measures.
Communications on Pure and Applied Mathematics, 61(1):18-53, 2008.
[AGS05] Luigi Ambrosio, Nicola Gigli, and Guiseppe Savaré.
Gradient Flows.
Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel, 2005.
[AKP22] Stephanie Alexander, Vitali Kapovitch, and Anton Petrunin.
Alexandrov geometry: Foundations, October 2022.
[BIRS19] Matteo Burzoni, Vicenzo Ignazio, A. Max Reppen, and H. Mete Soner. Viscosity Solutions for Controlled McKean-Vlasov Jump-Diffusions. 2019.

```
[BL94] Nicolas Bouleau and Dominique Lépingle.
Numerical Methods for Stochastic Processes.
1994.
[BY19] Alain Bensoussan and Sheung Chi Phillip Yam.
Control problem on space of random variables and master equation.
ESAIM: Control, Optimisation and Calculus of Variations, 25:10, 2019.
[Car13] Pierre Cardaliaguet.
Notes on Mean Field Games.
page 59, 2013.
[CCD15] Jean-François Chassagneux, Dan Crisan, and François Delarue.
A Probabilistic approach to classical solutions of the master equation for large population equilibria, April 2015.
[CD18a] René Carmona and François Delarue.
Probabilistic Theory of Mean Field Games with Applications I, volume 83 of Probability Theory and Stochastic Modelling.
Springer International Publishing, Cham, 2018.
```

[CD18b] René Carmona and François Delarue.
Probabilistic Theory of Mean Field Games with Applications II, volume 84 of Probability Theory and Stochastic Modelling.
Springer International Publishing, Cham, 2018.
[CDLL19] Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions.
The Master Equation and the Convergence Problem in Mean Field Games.
Number 201 in Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2019.
[CGK ${ }^{+} 22$] Andrea Cosso, Fausto Gozzi, Idris Kharroubi, Huyên Pham, and Mauro Rosestolato.
Master Bellman equation in the Wasserstein space: Uniqueness of viscosity solutions, February 2022.
[CLS18] Christa Cuchiero, Martin Larsson, and Sara Svaluto-Ferro.
Probability measure-valued polynomial diffusions, July 2018.
[CQ08] P. Cardaliaguet and M. Quincampoix.
Deterministic differential games under probability knowledge of initial condition.
International Game Theory Review, 10(01):1-16, March 2008.
[FK09] Jin Feng and Markos Katsoulakis.
A Comparison Principle for Hamilton-Jacobi Equations Related to Controlled Gradient Flows in Infinite Dimensions.
Archive for Rational Mechanics and Analysis, 192(2):275-310, May 2009.
[FN12] Jin Feng and Truyen Nguyen.
Hamilton-Jacobi equations in space of measures associated with a system of conservation laws. Journal de Mathématiques Pures et Appliquées, 97(4):318-390, April 2012.
[FV79] Wendell H. Fleming and Michel Viot.
Some Measure-Valued Markov Processes in Population Genetics Theory.
Indiana University Mathematics Journal, 28(5):817-843, 1979.
[GHN15] Yoshikazu Giga, Nao Hamamuki, and Atsushi Nakayasu.
Eikonal equations in metric spaces.
Transactions of the American Mathematical Society, 367(1):49-66, January 2015.
[Gig08] Nicola Gigli.
On the Geometry of the Space of Probability Measures Endowed with the Quadratic Optimal Transport Distance.
PhD thesis, Scuola Normale Superiore di Pisa, Pisa, 2008.
[GNT08] Wilfrid Gangbo, Truyen Nguyen, and Adrian Tudorascu.
Hamilton-Jacobi Equations in the Wasserstein Space.
Methods and Applications of Analysis, 15(2):155-184, 2008.
[GŚ14] Wilfrid Gangbo and Andrzej Świech.
Optimal transport and large number of particles.
Discrete and Continuous Dynamical Systems, 34(4):1397-1441, 2014.

[GŚ15a] Wilfrid Gangbo and Andrzej Święch.

Existence of a solution to an equation arising from the theory of Mean Field Games. Journal of Differential Equations, 259(11):6573-6643, December 2015.
[GŚ15b] Wilfrid Gangbo and Andrzej Święch.
Metric viscosity solutions of Hamilton-Jacobi equations depending on local slopes.
Calculus of Variations and Partial Differential Equations, 54(1):1183-1218, September 2015.
[GT19] Wilfrid Gangbo and Adrian Tudorascu.
On differentiability in the Wasserstein space and well-posedness for Hamilton-Jacobi equations. Journal de Mathématiques Pures et Appliquées, 125:119-174, May 2019.
[HK15] Ryan Hynd and Hwa Kil Kim.
Value functions in the Wasserstein spaces: Finite time horizons.
Journal of Functional Analysis, 269(4):968-997, August 2015.
[JKO98] Richard Jordan, David Kinderlehrer, and Felix Otto.
The Variational Formulation of the Fokker-Planck Equation.
SIAM Journal on Mathematical Analysis, 29(1):1-17, January 1998.
[JMQ20] Chloé Jimenez, Antonio Marigonda, and Marc Quincampoix.
Optimal control of multiagent systems in the Wasserstein space.
Calculus of Variations and Partial Differential Equations, 59, March 2020.
[JMQ22] Chloé Jimenez, Antonio Marigonda, and Marc Quincampoix.
Dynamical systems and Hamilton-Jacobi-Bellman equations on the Wasserstein space and their L2 representations.
2022.
[Lio06] Pierre-Louis Lions.
Jeux à champ moyen, 2006.
[MQ18] Antonio Marigonda and Marc Quincampoix.
Mayer control problem with probabilistic uncertainty on initial positions.
Journal of Differential Equations, 264(5):3212-3252, March 2018.
[MZ22] Chenchen Mou and Jianfeng Zhang.
Wellposedness of Second Order Master Equations for Mean Field Games with Nonsmooth Data, January 2022.
[Oht09] Shin-Ichi Ohta.
Gradient Flows on Wasserstein Spaces over Compact Alexandrov Spaces.
American Journal of Mathematics, 131(2):475-516, 2009.
[Ott01] Felix Otto.
The Geometry of Dissipative Evolution Equations: The Porous Medium Equation. Communications in Partial Differential Equations, 26(1-2):101-174, January 2001.
[PW17] Huyên Pham and Xiaoli Wei.
Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics, January 2017.
[PW18] Huyên Pham and Xiaoli Wei.
Bellman equation and viscosity solutions for mean-field stochastic control problem.
ESAIM: Control, Optimisation and Calculus of Variations, 24(1):437-461, January 2018.
[Sal23] William Salkeld.
Higher order Lions-Taylor expansions, March 2023.
[Vil09] Cédric Villani.
Optimal Transport, volume 338 of Grundlehren Der Mathematischen Wissenschaften. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[^0]: ${ }^{1}$ Under the assumptions of [AGS05, Theorem 11.3.2].

[^1]: ${ }^{1}$ Under the assumptions of [AGS05, Theorem 11.3.2].

