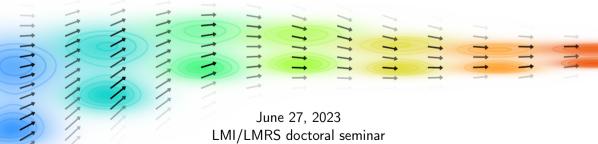
The D in PDE

Strategies for first-order differentiation in the space of measures

Averil Prost



LMI/LMRS doctoral seminar

Distributions	Lift 00000000	Semidifferentials 0000000	Metric case	Conclusion

 $\int_{x \in \mathbb{R}^d} |x|^2 \, d\mu(x) < \infty.$

Distributions 0000	Lift 00000000	Semidifferentials	Metric case	Conclusion

 $\int_{x\in\mathbb{R}^d} |x|^2 \, d\mu(x) < \infty.$

Aim For certain $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$, give a meaning to $\partial_{\mu} u(\mu)$.

Distributions 0000	Lift 00000000	Semidifferentials	Metric case	Conclusion

 $\int_{x\in\mathbb{R}^d} |x|^2 \, d\mu(x) < \infty.$

Aim For certain $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$, give a meaning to $\partial_{\mu} u(\mu)$.

For instance, we would like that the equation

$$\partial_t u(t,\mu) + \langle \partial_\mu u(t,\mu), b \rangle = 0, \qquad u(0,\mu) = u_0(\mu)$$

admits as solution $u(t,\mu) = u_0 ((id - tb) \# \mu)$.

Distributions 0000	Lift 00000000	Semidifferentials	Metric case	Conclusion

 $\int_{x\in\mathbb{R}^d} |x|^2 \, d\mu(x) < \infty.$

Aim For certain $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$, give a meaning to $\partial_{\mu} u(\mu)$.

For instance, we would like that the equation

$$\partial_t u(t,\mu) + \langle \partial_\mu u(t,\mu), b \rangle = 0, \qquad u(0,\mu) = u_0(\mu)$$

admits as solution $u(t, \mu) = u_0 ((id - tb) \# \mu)$.

This talk will review the definitions of the literature, going from smoothest to most general.

Distributions ●000	Lift 00000000	Semidifferentials	Metric case 0000	Conclusion

Table of Contents

Starting point: distributions and the Otto calculus

Lifting: the Lions derivative

Extrinsic formulation Intrinsic formulation

Geometric point of view: semidifferentials The regular case The general case

Insights from the metric point of view

Distributions ○●○○	Lift 00000000	Semidifferentials 0000000	Metric case	Conclusion
Some definitions				

Let $\mathcal{D} \coloneqq \mathcal{C}_c^1(\mathbb{R}^d, \mathbb{R})$. For each initial measure μ , denote $(\mu_s^{\mu, p})_{s \ge 0}$ the unique solution of the continuity equation

$$\partial_s \mu_s + \operatorname{div} \, (\nabla p \, \mu_s) = 0, \qquad \mu_0 = \mu.$$

Distributions 0●00	Lift 00000000	Semidifferentials	Metric case	Conclusion
Some definition	2			

Let $\mathcal{D} \coloneqq \mathcal{C}_c^1(\mathbb{R}^d, \mathbb{R})$. For each initial measure μ , denote $(\mu_s^{\mu, p})_{s \ge 0}$ the unique solution of the continuity equation

$$\partial_s \mu_s + \operatorname{div} (\nabla p \, \mu_s) = 0, \qquad \mu_0 = \mu.$$

Def 1 – Distributional derivative A map $u : \mathscr{P}(\mathbb{R}^d) \to \mathbb{R}$ admit a distributional derivative if there exist a distribution $\operatorname{grad}_{\mu} u \in \mathcal{D}'$ such that for all $p \in \mathcal{D}$,

$$\lim_{s\searrow 0} \frac{u(\mu_s^{\mu,p}) - u(\mu)}{s} = \left\langle \mathsf{grad}_{\mu} u(\mu), p \right\rangle_{\mathcal{D}', \mathcal{D}}$$

Distributions ○●○○	Lift 00000000	Semidifferentials	Metric case	Conclusion
Some definiti	ons			

Let $\mathcal{D} \coloneqq \mathcal{C}_c^1(\mathbb{R}^d, \mathbb{R})$. For each initial measure μ , denote $(\mu_s^{\mu, p})_{s \ge 0}$ the unique solution of the continuity equation

$$\partial_s \mu_s + \operatorname{div} (\nabla p \, \mu_s) = 0, \qquad \mu_0 = \mu.$$

Def 1 – **Distributional derivative** A map $u : \mathscr{P}(\mathbb{R}^d) \to \mathbb{R}$ admit a distributional derivative if there exist a distribution $\operatorname{grad}_{\mu} u \in \mathcal{D}'$ such that for all $p \in \mathcal{D}$,

$$\lim_{s \searrow 0} \frac{u(\mu_s^{\mu,p}) - u(\mu)}{s} = \left\langle \mathsf{grad}_{\mu} u(\mu), p \right\rangle_{\mathcal{D}', \mathcal{D}}$$

This definition is used in [FK09, FN12] to adress Hamilton-Jacobi equations.

Distributions 00●0	Lift 00000000	Semidifferentials	Metric case	Conclusion
	1.			

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x).$

Distributions 00●0	Lift 00000000	Semidifferentials	Metric case	Conclusion

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$. If ℓ is Lipschitz and \mathcal{C}^1 , then u is Lipschitz from $\mathscr{P}_2(\mathbb{R}^d)$ to \mathbb{R} , and

$$\lim_{s \searrow 0} \frac{u(\mu_s^{\mu,p}) - u(\mu)}{s} = \lim_{s \searrow 0} \frac{u((id + s\nabla p)\#\mu) - u(\mu)}{s}$$

Distributions	Lift	Semidifferentials	Metric case	Conclusion
00●0	00000000	0000000	0000	

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$. If ℓ is Lipschitz and \mathcal{C}^1 , then u is Lipschitz from $\mathscr{P}_2(\mathbb{R}^d)$ to \mathbb{R} , and

$$\lim_{s\searrow 0}\frac{u(\mu_s^{\mu,p})-u(\mu)}{s} = \lim_{s\searrow 0}\frac{u((id+s\nabla p)\#\mu)-u(\mu)}{s} = \lim_{s\searrow 0}\int_{x\in\mathbb{R}^d}\frac{\ell(x+s\nabla p(x))-\ell(x)}{s}d\mu(x)$$

Distributions 00●0	Lift 00000000	Semidifferentials	Metric case 0000	Conclusion

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$. If ℓ is Lipschitz and \mathcal{C}^1 , then u is Lipschitz from $\mathscr{P}_2(\mathbb{R}^d)$ to \mathbb{R} , and

$$\begin{split} \lim_{s \searrow 0} \frac{u(\mu_s^{\mu, p}) - u(\mu)}{s} &= \lim_{s \searrow 0} \frac{u((id + s\nabla p) \# \mu) - u(\mu)}{s} = \lim_{s \searrow 0} \int_{x \in \mathbb{R}^d} \frac{\ell(x + s\nabla p(x)) - \ell(x)}{s} d\mu(x) \\ &= \int_{x \in \mathbb{R}^d} \left\langle \nabla \ell(x), \nabla p(x) \right\rangle d\mu(x) \end{split}$$

Distributions 00●0	Lift 00000000	Semidifferentials	Metric case	Conclusion
Example: the	linear map			

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$. If ℓ is Lipschitz and \mathcal{C}^1 , then u is Lipschitz from $\mathscr{P}_2(\mathbb{R}^d)$ to \mathbb{R} , and

$$\begin{split} \lim_{s\searrow 0} \frac{u(\mu_s^{\mu,p}) - u(\mu)}{s} &= \lim_{s\searrow 0} \frac{u((id + s\nabla p) \# \mu) - u(\mu)}{s} = \lim_{s\searrow 0} \int_{x\in \mathbb{R}^d} \frac{\ell(x + s\nabla p(x)) - \ell(x)}{s} d\mu(x) \\ &= \int_{x\in \mathbb{R}^d} \left\langle \nabla \ell(x), \nabla p(x) \right\rangle d\mu(x) = -\left\langle \operatorname{div} \left(\mu \nabla \ell\right), p \right\rangle, \end{split}$$

so that the distributional derivative of u is the distribution $\operatorname{grad}_{\mu} u(\mu) \coloneqq -\operatorname{div} (\mu \nabla \ell)$.

Distributions 00●0	Lift 00000000	Semidifferentials	Metric case	Conclusion
Example [,] th	e linear map			

Consider the map $u: \mu \mapsto \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$. If ℓ is Lipschitz and \mathcal{C}^1 , then u is Lipschitz from $\mathscr{P}_2(\mathbb{R}^d)$ to \mathbb{R} , and

$$\begin{split} \lim_{s\searrow 0} \frac{u(\mu_s^{\mu,p}) - u(\mu)}{s} &= \lim_{s\searrow 0} \frac{u((id + s\nabla p) \# \mu) - u(\mu)}{s} = \lim_{s\searrow 0} \int_{x\in \mathbb{R}^d} \frac{\ell(x + s\nabla p(x)) - \ell(x)}{s} d\mu(x) \\ &= \int_{x\in \mathbb{R}^d} \left\langle \nabla \ell(x), \nabla p(x) \right\rangle d\mu(x) = -\left\langle \operatorname{div} \left(\mu \nabla \ell\right), p \right\rangle, \end{split}$$

so that the distributional derivative of u is the distribution $\operatorname{grad}_{\mu}u(\mu) \coloneqq -\operatorname{div}(\mu \nabla \ell)$.

Remark 1 – Meaning of the divergence Here div $(\mu \cdot)$ is a *notation* for the adjoint operator of the gradient, i.e. $\langle \operatorname{div}(\mu F), p \rangle \coloneqq \langle F, \nabla p \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \langle F(x), \nabla p(x) \rangle d\mu(x)$. In particular, if μ is the Lebesgue measure, it contains the boundary terms.

Distributions 000●	Lift 00000000	Semidifferentials	Metric case	Conclusion
The Otto calcul	JS			

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].

Distributions 000●	Lift 00000000	Semidifferentials	Metric case	Conclusion
The Otto cal	culuc			

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].

Consider the map $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} U(\rho(x)) dx$, where $\mu = \rho dx$. Denote $\mu_t = \rho(t, x)\nu$ the solution of $\partial_t \mu + \operatorname{div}(\mu \nabla p) = 0$.

Ξ

Distributions 000●	Lift 00000000	Semidifferentials	Metric case	Conclusion

=

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].

$$\frac{d}{dt}_{|t=0}u(\mu_t) = \int_{x\in\mathbb{R}^d} U'(\rho_0)\partial_t\rho_0 dx$$

Distributions 000●	Lift 00000000	Semidifferentials	Metric case	Conclusion

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].

$$\frac{d}{dt}_{|t=0}u(\mu_t) = \int_{x\in\mathbb{R}^d} U'(\rho_0)\partial_t\rho_0 dx = \int_{x\in\mathbb{R}^d} U'(\rho_0)\left(-\operatorname{div}\left(\rho_0\nabla p\right)\right) dx$$

Distributions 000●	Lift 00000000	Semidifferentials	Metric case	Conclusion

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].

$$\begin{split} \frac{d}{dt}_{|t=0} u(\mu_t) &= \int_{x \in \mathbb{R}^d} U'(\rho_0) \partial_t \rho_0 dx = \int_{x \in \mathbb{R}^d} U'(\rho_0) \left(-\operatorname{div}\left(\rho_0 \nabla p\right) \right) dx \\ &= \int_{x \in \mathbb{R}^d} \left\langle \rho_0 \nabla [U' \circ \rho_0], \nabla p \right\rangle dx \end{split}$$

Distributions 000●	Lift 00000000	Semidifferentials	Metric case	Conclusion

=

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].

$$\begin{split} \frac{d}{dt}_{|t=0} u(\mu_t) &= \int_{x \in \mathbb{R}^d} U'(\rho_0) \partial_t \rho_0 dx = \int_{x \in \mathbb{R}^d} U'(\rho_0) \left(-\operatorname{div}\left(\rho_0 \nabla p\right) \right) dx \\ &= \int_{x \in \mathbb{R}^d} \left\langle \rho_0 \nabla [U' \circ \rho_0], \nabla p \right\rangle dx = \int_{x \in \mathbb{R}^d} -\operatorname{div}\left(\rho_0 \nabla [U' \circ \rho_0]\right) p(x) dx. \end{split}$$

Distributions 000●	Lift 00000000	Semidifferentials	Metric case	Conclusion

Ξ

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family of derivatives. The "formal Otto calculus" allows to recast canonical equations as gradient flows in the Wasserstein space, as summarized in [Vil09].

Consider the map $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} U(\rho(x)) dx$, where $\mu = \rho dx$. Denote $\mu_t = \rho(t, x)\nu$ the solution of $\partial_t \mu + \operatorname{div}(\mu \nabla p) = 0$. Then, at least formally,

$$\begin{split} \frac{d}{dt}_{|t=0} u(\mu_t) &= \int_{x \in \mathbb{R}^d} U'(\rho_0) \partial_t \rho_0 dx = \int_{x \in \mathbb{R}^d} U'(\rho_0) \left(-\operatorname{div}\left(\rho_0 \nabla p\right) \right) dx \\ &= \int_{x \in \mathbb{R}^d} \left\langle \rho_0 \nabla [U' \circ \rho_0], \nabla p \right\rangle dx = \int_{x \in \mathbb{R}^d} -\operatorname{div}\left(\rho_0 \nabla [U' \circ \rho_0]\right) p(x) dx. \end{split}$$

Hence $\operatorname{grad}_{\mu} u = -\operatorname{div} (\rho \nabla [U' \circ \rho])$. For instance, $U(r) = r \ln(r)$ gives $\operatorname{grad}_{\mu} u = -\Delta \rho(x)$.

Distributions 0000	Lift ●0000000	Semidifferentials 0000000	Metric case	Conclusion

Table of Contents

Starting point: distributions and the Otto calculus

Lifting: the Lions derivative Extrinsic formulation Intrinsic formulation

Geometric point of view: semidifferentials The regular case The general case

Insights from the metric point of view

Distributions 0000	Lift ○●0000000	Semidifferentials	Metric case	Conclusion
The lift				

History in two parts: the original extrinsic *lifted* formulation, and the (quite new) *intrinsic* one.

Distributions 0000	Lift ○●0000000	Semidifferentials	Metric case	Conclusion

History in two parts: the original extrinsic *lifted* formulation, and the (quite new) *intrinsic* one.

Fundamental theorem of simulation (name from [BL94], [CD18a, Lemma 5.29]) Let $(\Omega, \mathcal{A}, \mathbb{P})$ be an atomless probability space, and $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Then there exist $X \in L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d)$ such that

the law of X is μ , i.e. $\mu = X \# \mathbb{P}$, i.e. $\mu(A) = \mathbb{P}(X^{-1}(A)) \quad \forall A \in \mathcal{A}$.

l he litt

Distributions	Lift ○●0000000	Semidifferentials	Metric case	Conclusion 00

History in two parts: the original extrinsic lifted formulation, and the (quite new) intrinsic one.

Fundamental theorem of simulation (name from [BL94], [CD18a, Lemma 5.29]) Let $(\Omega, \mathcal{A}, \mathbb{P})$ be an atomless probability space, and $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Then there exist $X \in L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d)$ such that

the law of X is
$$\mu$$
, i.e. $\mu = X \# \mathbb{P}$, i.e. $\mu(A) = \mathbb{P}(X^{-1}(A)) \quad \forall A \in \mathcal{A}$.

Def 2 – Lift Let $u: \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$. Its *lift* is a map $U: L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d) \to \mathbb{R}$ given by

$$U(X) = u(\mathcal{L}(\mathcal{X})) = u(X \# \mathbb{P}).$$

The lift

Distributions 0000	Lift ○ ○●○ ○○○○○	Semidifferentials 0000000	Metric case	Conclusion

Gradient using the Hilbert structure

Def 3 – L-derivative Assume that U is F-differentiable in $L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d)$. Then for all $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exist an element $\xi_{\mu} \in L^2_{\mu}(\mathbb{R}^d; \mathbb{R}^d)$ such that

$$\forall X \in L^2\left(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d\right) \text{ s.t. } \mathcal{L}(X) = \mu, \qquad \nabla U(X)(\omega) = \xi_\mu(X(\omega)) \quad \forall \omega \in \Omega.$$

We then denote $\partial_{\mu}u(\mu) \coloneqq \xi_{\mu}$. (Here, $\partial_{\mu}u(\mu)$ is a function in $L^2_{\mu}(\mathbb{R}^d;\mathbb{R}^d)$.)

Distributions 0000	Lift 00●000000	Semidifferentials 0000000	Metric case	Conclusion

Gradient using the Hilbert structure

Def 3 – L-derivative Assume that U is F-differentiable in $L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d)$. Then for all $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exist an element $\xi_{\mu} \in L^2_{\mu}(\mathbb{R}^d; \mathbb{R}^d)$ such that

$$\forall X \in L^2\left(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d\right) \text{ s.t. } \mathcal{L}(X) = \mu, \qquad \nabla U(X)(\omega) = \xi_\mu(X(\omega)) \quad \forall \omega \in \Omega.$$

We then denote $\partial_{\mu}u(\mu) \coloneqq \xi_{\mu}$. (Here, $\partial_{\mu}u(\mu)$ is a function in $L^2_{\mu}(\mathbb{R}^d;\mathbb{R}^d)$.)

Idea launched by P.L. Lions in [Lio06], transcripted in [Car13]. Very popular notion, used (in particular) in [CCD15, PW17, PW18, BY19, CGK⁺22, CGK⁺22, MZ22] to make the link between SDEs and PDEs, with focus on the master equation. Higher order derivatives are also defined (see [Sal23] for arbitrary order).

Distributions	Lift ○00●○○○○○	Semidifferentials	Metric case	Conclusion
Example				

$$U(X) = \int_{\omega \in \Omega} \ell(X(\omega)) d\mathbb{P}(\omega).$$

Distributions	Lift ○00●○○○○○	Semidifferentials	Metric case	Conclusion
Example				

$$U(X) = \int_{\omega \in \Omega} \ell(X(\omega)) d\mathbb{P}(\omega).$$

If $\ell \in \mathcal{C}^1$ and Lipschitz, then

$$\lim_{h\searrow 0}\frac{U(X+hY)-U(X)}{h}=\int_{\omega\in\Omega}\left\langle \nabla\ell(X(\omega)),Y(\omega)\right\rangle d\mathbb{P}(\omega)=\left\langle \nabla\ell\circ X,Y\right\rangle_{L^2_{\mathbb{P}}}.$$

Distributions	Lift ○00●○○○○○	Semidifferentials	Metric case	Conclusion
Example				

$$U(X) = \int_{\omega \in \Omega} \ell(X(\omega)) d\mathbb{P}(\omega).$$

If $\ell \in \mathcal{C}^1$ and Lipschitz, then

$$\lim_{h\searrow 0} \frac{U(X+hY)-U(X)}{h} = \int_{\omega\in\Omega} \left< \nabla \ell(X(\omega)), Y(\omega) \right> d\mathbb{P}(\omega) = \left< \nabla \ell \circ X, Y \right>_{L^2_{\mathbb{P}}}.$$

Hence $DU(X) = \nabla \ell \circ X$, and $\partial_{\mu} u(\mu) = \nabla \ell : \mathbb{R}^d \to \mathbb{R}^d$ (here independant of μ).

Distributions	Lift ○ ○○● ○○○○○	Semidifferentials	Metric case	Conclusion
Example				

$$U(X) = \int_{\omega \in \Omega} \ell(X(\omega)) d\mathbb{P}(\omega).$$

If $\ell \in \mathcal{C}^1$ and Lipschitz, then

$$\lim_{h\searrow 0}\frac{U(X+hY)-U(X)}{h}=\int_{\omega\in\Omega}\left\langle \nabla\ell(X(\omega)),Y(\omega)\right\rangle d\mathbb{P}(\omega)=\left\langle \nabla\ell\circ X,Y\right\rangle_{L^2_{\mathbb{P}}}.$$

Hence $DU(X) = \nabla \ell \circ X$, and $\partial_{\mu} u(\mu) = \nabla \ell : \mathbb{R}^d \to \mathbb{R}^d$ (here independant of μ).

Remark 2 – Insatisfaction This "delocalization" procedure does not seem really natural.

Distributions 0000	Lift ○○○○●○○○○	Semidifferentials	Metric case	Conclusion

The linear derivative

Def 4 – Linear derivative A map $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is said to admit a linear (functional) derivative if there exist a function $(\mu, x) \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ satisfying

• for all
$$\nu \in \mathscr{P}_2(\mathbb{R}^d)$$
, $\lim_{s\searrow 0} \frac{u(\mu+s(\nu-\mu))-u(\mu)}{s} = \int_{x\in\mathbb{R}^d} \frac{\delta u}{\delta \mu}(\mu,x) d\left[\nu-\mu\right](x)$,

Distributions 0000	Lift ○○○○●○○○○	Semidifferentials	Metric case	Conclusion

The linear derivative

Def 4 – Linear derivative A map $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is said to admit a linear (functional) derivative if there exist a function $(\mu, x) \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ satisfying

- for all $\nu \in \mathscr{P}_2(\mathbb{R}^d)$, $\lim_{s\searrow 0} \frac{u(\mu+s(\nu-\mu))-u(\mu)}{s} = \int_{x\in\mathbb{R}^d} \frac{\delta u}{\delta \mu}(\mu,x)d\left[\nu-\mu\right](x)$,
- the normalizing convention $\int_{x\in\mathbb{R}^d} \frac{\delta u}{\delta\mu}(\mu,x)d\mu(x) = 0.$

Distributions 0000	Lift ○○○○●○○○○	Semidifferentials	Metric case	Conclusion

The linear derivative

Def 4 – Linear derivative A map $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is said to admit a linear (functional) derivative if there exist a function $(\mu, x) \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ satisfying

- for all $\nu \in \mathscr{P}_2(\mathbb{R}^d)$, $\lim_{s \searrow 0} \frac{u(\mu + s(\nu \mu)) u(\mu)}{s} = \int_{x \in \mathbb{R}^d} \frac{\delta u}{\delta \mu}(\mu, x) d\left[\nu \mu\right](x)$,
- the normalizing convention $\int_{x \in \mathbb{R}^d} \frac{\delta u}{\delta \mu}(\mu, x) d\mu(x) = 0.$

E

This formulation goes back to Fleming-Viot processes [FV79], and is used outside of the Wasserstein context (see [CLS18] for references). It corresponds to the Fréchet derivative in the Banach space $(\mathcal{M}, |\cdot|_{TV})$, restricted to $\mathscr{P}_2(\mathbb{R}^d)$. Used in viscosity [BIRS19] and for the master equation [CD18a, CDLL19].

Distributions 0000	Lift ○○○○○●○○○	Semidifferentials	Metric case	Conclusion

Example and chain rule

Let $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$. Then one simply has

$$\frac{u(\mu+s(\nu-\mu))-u(\mu)}{s} = \int_{x\in\mathbb{R}^d} \ell(x)d[\nu-\mu](x),$$

Distributions 0000	Lift ○○○○ ○ ●○○○	Semidifferentials	Metric case	Conclusion

Example and chain rule

Let $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$. Then one simply has

$$\frac{u(\mu+s(\nu-\mu))-u(\mu)}{s} = \int_{x\in\mathbb{R}^d} \ell(x)d[\nu-\mu](x),$$

so that $\frac{\delta u}{\delta \mu}(\mu, x) = \ell(x) - \langle \ell, \mu \rangle$ (for the normalization).

Distributions	Lift ○○○○○●○○○	Semidifferentials	Metric case	Conclusion

Example and chain rule

Let $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$. Then one simply has

$$\frac{u(\mu+s(\nu-\mu))-u(\mu)}{s} = \int_{x\in\mathbb{R}^d} \ell(x)d[\nu-\mu](x),$$

so that $\frac{\delta u}{\delta \mu}(\mu, x) = \ell(x) - \langle \ell, \mu \rangle$ (for the normalization).

Chain rule 1 If $(x,\mu) \mapsto \frac{\delta u}{\delta \mu}(\mu,x)$ is Lipschitz in $\mathscr{P}_2(\mathbb{R}^d) \times \mathbb{R}^d$ and the curve $(\mu_t)_{t \in [0,T]} \subset \mathscr{P}_2(\mathbb{R}^d)$ is Lipschitz in time, then

$$u(\mu_T) - u(\mu_0) = \int_{t=0}^T \left\langle \frac{\delta u}{\delta \mu}(\mu_t, \cdot), \partial_t \mu_t \right\rangle dt.$$
 (CR- $\delta/\delta\mu$)

Distributions	Lift ○○○○○ ○ ●○○	Semidifferentials	Metric case	Conclusion
The (natural) derivative			

Def 5 – **Natural derivative** Assume that $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ admits a linear derivative that is jointly continuous, and such that for all fixed $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, the map $x \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ is differentiable in \mathbb{R}^d . Then one defines the natural derivative of u as

$$D_{\mu}u:\mathscr{P}_2(\mathbb{R}^d)\times\mathbb{R}^d\to\mathbb{R}^d,\qquad D_{\mu}u(\mu,x)=\nabla_x\frac{\delta u}{\delta\mu}(\mu,x).$$

Distributions	Lift ○○○○○ ○ ●○○	Semidifferentials	Metric case	Conclusion
The (natural) derivative			

Def 5 – **Natural derivative** Assume that $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ admits a linear derivative that is jointly continuous, and such that for all fixed $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, the map $x \mapsto \frac{\delta u}{\delta \mu}(\mu, x)$ is differentiable in \mathbb{R}^d . Then one defines the natural derivative of u as

$$D_{\mu}u: \mathscr{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}^d, \qquad D_{\mu}u(\mu, x) = \nabla_x \frac{\delta u}{\delta \mu}(\mu, x).$$

The notations are taken from [CD18a, CD18b], and this definition is used in [CDLL19]. The terminology is not clear, and we called $D_{\mu}u$ "natural derivative" in waiting of a better name.

Distributions	Lift	Semidifferentials	Metric case	Conclusion
0000	○○○○○○○●○	0000000	0000	

Example and chain rule

According to Frame 12, the map $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$ has a linear derivative $\frac{\delta u}{\delta \mu}(\mu, x) = \ell(x) - \langle \ell, \mu \rangle$. Hence we directly have

$$D_{\mu}u(\mu, x) = \nabla_x \frac{\delta u}{\delta \mu}(\mu, x) = \nabla \ell(x).$$

Distributions 0000	Lift ○○○○○○○●○	Semidifferentials	Metric case	Conclusion

Example and chain rule

According to Frame 12, the map $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$ has a linear derivative $\frac{\delta u}{\delta \mu}(\mu, x) = \ell(x) - \langle \ell, \mu \rangle$. Hence we directly have

$$D_{\mu}u(\mu, x) = \nabla_x \frac{\delta u}{\delta \mu}(\mu, x) = \nabla \ell(x).$$

Chain rule 2 Assume that $D_{\mu}u(\mu)$ is jointly continuous, and let the measure curve $(\mu_t)_{t\in[0,T]}$ solve $\partial_t\mu_t = -\operatorname{div}(g(t,\cdot,\mu_t)\#\mu_t)$. Then, from (CR- $\delta/\delta\mu$), we obtain

$$u(\mu_T) - u(\mu_0) = \int_{t=0}^T \left\langle \nabla_x \frac{\delta u}{\delta \mu}(\mu, x), g(t, \cdot, \mu_t) \right\rangle_{\mu_t} dt$$
$$= \int_{t=0}^T \int_{x \in \mathbb{R}^d} \left\langle D_\mu u(\mu_t, x), g(t, x, \mu_t) \right\rangle d\mu_t(x) dt.$$

Distributions	Lift ○○○○○○○●	Semidifferentials	Metric case	Conclusion
Links				

Link ([CD18a, Prop. 5.48] and [CDLL19, Appx A]) Let $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$, and assume that either

- u admits a jointly continuous Lions-differential $\partial_{\mu}u$ in the sense of Def 3 that has linear growth in x uniformly in μ ,
- u admits a jointly continuous natural derivative $D_{\mu}u$ in the sense of Def 5 that has linear growth in x uniformly in μ .

Then the other point stands and

$$\partial_{\mu} u(\mu, x) = D_{\mu} u(\mu, x) \qquad \forall (\mu, x) \in \mathscr{P}_2(\mathbb{R}^d) \times \mathbb{R}^d.$$

Hence the two definitions are gathered under the vocabulary of "Lions differentiability".

Distributions	Lift	Semidifferentials	Metric case	Conclusion
0000	00000000	●○○○○○○	0000	

Table of Contents

Starting point: distributions and the Otto calculus

Lifting: the Lions derivative Extrinsic formulation Intrinsic formulation

Geometric point of view: semidifferentials The regular case The general case

Insights from the metric point of view

Distributions	Lift 00000000	Semidifferentials ○●○○○○○	Metric case	Conclusion
The regular case				

Define a family of "tangent vectors" to μ as

$$T_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) \coloneqq \overline{\{\nabla \varphi \mid \varphi \in \mathcal{C}_{c}^{1}\left(\mathbb{R}^{d}; \mathbb{R}\right)\}}^{L^{2}_{\mu}}.$$

Distributions 0000	Lift 00000000	Semidifferentials ○●○○○○○	Metric case	Conclusion
T I I				

The regular case

Define a family of "tangent vectors" to $\boldsymbol{\mu}$ as

$$T_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) \coloneqq \overline{\{\nabla\varphi \mid \varphi \in \mathcal{C}^{1}_{c}\left(\mathbb{R}^{d};\mathbb{R}\right)\}}^{L^{2}_{\mu}}.$$

Def 6 – **Regular semidifferentials** Let $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. An element $\xi \in T_\mu \mathscr{P}_2(\mathbb{R}^d)$ is said to belong to the subdifferential of u at μ if for all $\nu \in \mathscr{P}_2(\mathbb{R}^d)$,

$$u(\nu) - u(\mu) \ge \sup_{\eta \in \Gamma_o(\mu,\nu)} \int_{(x,y) \in (\mathbb{R}^d)^2} \left\langle \xi(x), y - x \right\rangle d\eta(x,y) + o\left(d_{\mathcal{W}}(\mu,\nu)\right) d\eta(x,y) + o\left(d_{\mathcal{W}}(\mu,\mu)\right) d\eta(x,y) + o\left(d_{\mathcal{W}}(\mu,\mu)\right)$$

The set of such ξ is denoted $\partial u(\mu)$. The superdifferential writes $\partial u(\mu) \coloneqq -\partial (-u)(\mu)$.

Distributions	Lift 00000000	Semidifferentials ○●○○○○○	Metric case	Conclusion
TI I				

The regular case

Define a family of "tangent vectors" to $\boldsymbol{\mu}$ as

$$T_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) \coloneqq \overline{\{\nabla\varphi \mid \varphi \in \mathcal{C}^{1}_{c}\left(\mathbb{R}^{d};\mathbb{R}\right)\}}^{L^{2}_{\mu}}.$$

Def 6 – **Regular semidifferentials** Let $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. An element $\xi \in T_\mu \mathscr{P}_2(\mathbb{R}^d)$ is said to belong to the subdifferential of u at μ if for all $\nu \in \mathscr{P}_2(\mathbb{R}^d)$,

$$u(\nu) - u(\mu) \ge \sup_{\eta \in \Gamma_o(\mu,\nu)} \int_{(x,y) \in (\mathbb{R}^d)^2} \left\langle \xi(x), y - x \right\rangle d\eta(x,y) + o\left(d_{\mathcal{W}}(\mu,\nu)\right).$$

The set of such ξ is denoted $\partial .u(\mu)$. The superdifferential writes $\partial .u(\mu) \coloneqq -\partial .(-u)(\mu)$.

This definition inspired the δ -semidifferentials of [CQ08, MQ18, JMQ20, JMQ22].

B

Distributions	Lift 00000000	Semidifferentials ○0●0○○○	Metric case	Conclusion
Example				

Let $u(\mu) = \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$, and assume that $\ell \in \mathcal{C}^1$ is λ -semiconvex, i.e.

$$\ell(y) - \ell(x) \ge \langle \nabla \ell(x), y - x \rangle - \frac{\lambda}{2} |y - x|^2.$$

Distributions	Lift 00000000	Semidifferentials ○0●0000	Metric case	Conclusion
Example				

Let $u(\mu) = \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$, and assume that $\ell \in \mathcal{C}^1$ is λ -semiconvex, i.e.

$$\ell(y) - \ell(x) \ge \langle \nabla \ell(x), y - x \rangle - \frac{\lambda}{2} |y - x|^2.$$

Then, for any $(\mu,\nu) \in (\mathscr{P}_2(\mathbb{R}^d))^2$, integrating the above against $\eta \in \Gamma_o(\mu,\nu)$ yields

$$\underbrace{\int_{y\in\mathbb{R}^d}\ell(y)d\nu(y)}_{u(\nu)} - \underbrace{\int_{x\in\mathbb{R}^d}\ell(x)d\mu(x)}_{u(\mu)} \ge \int_{(x,y)\in(\mathbb{R}^d)^2} \left\langle \nabla\ell(x), y-x\right\rangle d\eta(x,y) - \frac{\lambda}{2}d_{\mathcal{W}}^2(\mu,\nu).$$

Distributions	Lift 00000000	Semidifferentials ○0●0○○○	Metric case 0000	Conclusion
Example				

Let $u(\mu) = \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$, and assume that $\ell \in \mathcal{C}^1$ is λ -semiconvex, i.e.

$$\ell(y) - \ell(x) \ge \langle \nabla \ell(x), y - x \rangle - \frac{\lambda}{2} |y - x|^2.$$

Then, for any $(\mu,\nu) \in (\mathscr{P}_2(\mathbb{R}^d))^2$, integrating the above against $\eta \in \Gamma_o(\mu,\nu)$ yields

$$\underbrace{\int_{y\in\mathbb{R}^d}\ell(y)d\nu(y)}_{u(\nu)} - \underbrace{\int_{x\in\mathbb{R}^d}\ell(x)d\mu(x)}_{u(\mu)} \ge \int_{(x,y)\in(\mathbb{R}^d)^2}\left\langle \nabla\ell(x), y-x\right\rangle d\eta(x,y) - \frac{\lambda}{2}d_{\mathcal{W}}^2(\mu,\nu).$$

Since η is arbitrary, we conclude that $x \mapsto \nabla \ell(x)$ belongs to the subdifferential of u at μ .

Distributions 0000	Lift 00000000	Semidifferentials ○00●○○○	Metric case	Conclusion

Link with the Lions differentiability

Def 7 – W-differential Let $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ such that $\partial . u(\mu) \neq \emptyset$ and $\partial^{\cdot} u(\mu) \neq \emptyset$. Then $\partial . u(\mu) = \partial^{\cdot} u(\mu) = \{\xi\}$, and the Wasserstein gradient of u at μ is $\nabla_{\!\!W} u(\mu) \coloneqq \xi$.

Distributions	Lift 00000000	Semidifferentials ○○○●○○○	Metric case	Conclusion

Link with the Lions differentiability

Def 7 – W-differential Let $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ such that $\partial . u(\mu) \neq \emptyset$ and $\partial u(\mu) \neq \emptyset$. Then $\partial . u(\mu) = \partial u(\mu) = \{\xi\}$, and the Wasserstein gradient of u at μ is $\nabla_{\!w} u(\mu) \coloneqq \xi$.

The map u admits a W-gradient $\nabla_{\!\!W} u(\mu)$ at μ if and only if its lift $U(X) \coloneqq u(\mathcal{L}(X))$ is differentiable at some X such that $\mathcal{L}(X) = \mu$. In this case, one has $\nabla_{\!W} u(\mu) = \partial_{\mu} u(\mu)$.

Distributions	Lift 00000000	Semidifferentials ○00●○○○	Metric case	Conclusion

Link with the Lions differentiability

Def 7 – W-differential Let $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ such that $\partial . u(\mu) \neq \emptyset$ and $\partial u(\mu) \neq \emptyset$. Then $\partial . u(\mu) = \partial u(\mu) = \{\xi\}$, and the Wasserstein gradient of u at μ is $\nabla_{\!w} u(\mu) \coloneqq \xi$.

The map u admits a W-gradient $\nabla_{\!\!W} u(\mu)$ at μ if and only if its lift $U(X) \coloneqq u(\mathcal{L}(X))$ is differentiable at some X such that $\mathcal{L}(X) = \mu$. In this case, one has $\nabla_{\!W} u(\mu) = \partial_{\mu} u(\mu)$.

The geometric approach of Wasserstein gradients originated in [AGS05], followed by [GNT08]. [AG08, GŚ14] make a direct use of this definition in viscosity solutions. The above link was shown in [GT19, Corollary 3.22] (see also [CD18a, Theorem 5.64]).

Distributions 0000	Lift 00000000	Semidifferentials ○○○○●○○	Metric case	Conclusion

Problem: the regular tangent cone does not split mass.

Distributions	Lift	Semidifferentials	Metric case	Conclusion
0000	00000000	○○○○●○○		00

Problem: the regular tangent cone does not split mass. Define the general tangent cone as

$$\boldsymbol{T}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})\coloneqq\overline{\left\{\boldsymbol{\xi}\in\mathscr{P}(T\mathbb{R}^{d})_{\mu}\;\middle|\;\exists\varepsilon>0,t\mapsto\exp_{\mu}(t\cdot\boldsymbol{\xi})\text{ is a geodesic on }t\in[0,\varepsilon]\right\}}^{W_{\mu}},$$

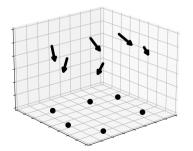
where $W_{\mu}(\xi,\eta) \coloneqq \int_{x \in \mathbb{R}^d} d_{\mathcal{W}}(\xi_x,\eta_x) d\mu(x)$ is a generalization of the L^2_{μ} distance on plans.

Distributions	Lift	Semidifferentials	Metric case	Conclusion
0000	00000000	○○○○●○○		00

Problem: the regular tangent cone does not split mass. Define the general tangent cone as

$$\boldsymbol{T}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})\coloneqq\overline{\left\{\boldsymbol{\xi}\in\mathscr{P}(T\mathbb{R}^{d})_{\mu}\;\middle|\;\exists\varepsilon>0,t\mapsto\exp_{\mu}(t\cdot\boldsymbol{\xi})\text{ is a geodesic on }t\in[0,\varepsilon]\right\}}^{W_{\mu}},$$

where $W_{\mu}(\xi,\eta) \coloneqq \int_{x \in \mathbb{R}^d} d_{\mathcal{W}}(\xi_x,\eta_x) d\mu(x)$ is a generalization of the L^2_{μ} distance on plans.

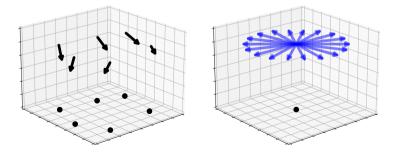


Distributions	Lift	Semidifferentials	Metric case	Conclusion
0000	00000000	○○○●○○		00

Problem: the regular tangent cone does not split mass. Define the general tangent cone as

$$\boldsymbol{T}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})\coloneqq\overline{\left\{\boldsymbol{\xi}\in\mathscr{P}(T\mathbb{R}^{d})_{\mu}\;\middle|\;\exists\varepsilon>0,t\mapsto\exp_{\mu}(t\cdot\boldsymbol{\xi})\text{ is a geodesic on }t\in[0,\varepsilon]\right\}}^{W_{\mu}},$$

where $W_{\mu}(\xi,\eta) \coloneqq \int_{x \in \mathbb{R}^d} d_{\mathcal{W}}(\xi_x,\eta_x) d\mu(x)$ is a generalization of the L^2_{μ} distance on plans.



Averil	Prost

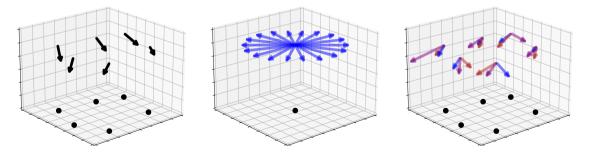
* * *

Distributions 0000	Lift 00000000	Semidifferentials ○○○●●○○	Metric case	Conclusion

Problem: the regular tangent cone does not split mass. Define the general tangent cone as

$$\boldsymbol{T}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})\coloneqq\overline{\left\{\boldsymbol{\xi}\in\mathscr{P}(T\mathbb{R}^{d})_{\mu}\;\middle|\;\exists\varepsilon>0,t\mapsto\exp_{\mu}(t\cdot\boldsymbol{\xi})\text{ is a geodesic on }t\in[0,\varepsilon]\right\}}^{W_{\mu}},$$

where $W_{\mu}(\xi,\eta) \coloneqq \int_{x \in \mathbb{R}^d} d_{\mathcal{W}}(\xi_x,\eta_x) d\mu(x)$ is a generalization of the L^2_{μ} distance on plans.



Distributions	Lift 00000000	Semidifferentials ○○○○○●○	Metric case	Conclusion

Generalized semidifferentials

For any $\xi \in T_{\mu}\mathscr{P}_2(\mathbb{R}^d)$ and $\nu \in \mathscr{P}_2(\mathbb{R}^d)$, denote $\Gamma_o(\xi, \nu)$ the set of plans

$$\eta \in \mathscr{P}\left(\left\{(x, v_1, v_2) \mid x \in \mathbb{R}^d, v_i \in T_x \mathbb{R}^d\right\}\right) \quad \text{ s.t. } \quad \begin{cases} \pi_{x, v_1} \# \eta = \xi, \\ (\pi_x, \pi_x + \pi_{v_2}) \# \eta \in \Gamma_o(\mu, \nu). \end{cases}$$

Distributions 0000	Lift 00000000	Semidifferentials ○○○○○●○	Metric case	Conclusion

Generalized semidifferentials

For any $\xi \in T_{\mu}\mathscr{P}_2(\mathbb{R}^d)$ and $\nu \in \mathscr{P}_2(\mathbb{R}^d)$, denote $\Gamma_o(\xi, \nu)$ the set of plans

$$\eta \in \mathscr{P}\left(\left\{(x, v_1, v_2) \mid x \in \mathbb{R}^d, v_i \in T_x \mathbb{R}^d\right\}\right) \quad \text{ s.t. } \quad \begin{cases} \pi_{x, v_1} \# \eta = \xi, \\ (\pi_x, \pi_x + \pi_{v_2}) \# \eta \in \Gamma_o(\mu, \nu). \end{cases}$$

Def 8 Let $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. A tangent vector $\xi \in T_\mu \mathscr{P}_2(\mathbb{R}^d)$ belongs to the generalized subdifferential of u at μ , denoted $\partial_{\cdot} u(\mu)$, if for all $\nu \in \mathscr{P}_2(\mathbb{R}^d)$,

$$u(\nu) - u(\mu) \ge \sup_{\eta \in \Gamma_o(\xi,\nu)} \int_{x \in \mathbb{R}^d, (v_1,v_2) \in (T_x \mathbb{R}^d)^2} \langle v_1, v_2 \rangle \, d\eta(x,v_1,v_2) + o\left(d_{\mathcal{W}}(\mu,\nu)\right),$$

The generalized superdifferential is defined as $\partial^{\cdot} u(\mu) \coloneqq -\partial_{\cdot}(-u)(\mu)$.

Distributions	Lift 00000000	Semidifferentials ○○○○○●	Metric case 0000	Conclusion
Example				

Let $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$, and assume that ℓ is λ -semiconvex (but not \mathcal{C}^1 anymore). Denote $\partial_x \ell$ the subdifferential of ℓ at x (a set of vectors).

Distributions	Lift 00000000	Semidifferentials ○○○○○●	Metric case	Conclusion
Example				

Let $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$, and assume that ℓ is λ -semiconvex (but not \mathcal{C}^1 anymore). Denote $\partial_x \ell$ the subdifferential of ℓ at x (a set of vectors). Let $\xi \in \mathscr{P}\left(\bigcup_{x \in \mathbb{R}^d} \{x\} \times \partial_x \ell\right)$ be such that $\pi_x \# \xi = \mu$ (ξ only gives mass to the subdifferential of ℓ). Then, for any $x \in \mathbb{R}^d$, any $v_1 \in \partial_x \ell$ and any $v_2 \in T_x \mathbb{R}^d$,

$$\ell(x+v_2) - \ell(x) \ge \langle v_1, v_2 \rangle - \frac{\lambda}{2} |v_2|^2.$$

Distributions 0000	Lift 00000000	Semidifferentials ○○○○○●	Metric case	Conclusion
Example				

Let $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$, and assume that ℓ is λ -semiconvex (but not \mathcal{C}^1 anymore). Denote $\partial_x \ell$ the subdifferential of ℓ at x (a set of vectors). Let $\xi \in \mathscr{P}\left(\bigcup_{x \in \mathbb{R}^d} \{x\} \times \partial_x \ell\right)$ be such that $\pi_x \# \xi = \mu$ (ξ only gives mass to the subdifferential of ℓ). Then, for any $x \in \mathbb{R}^d$, any $v_1 \in \partial_x \ell$ and any $v_2 \in T_x \mathbb{R}^d$,

$$\ell(x+v_2)-\ell(x) \ge \langle v_1, v_2 \rangle - \frac{\lambda}{2} |v_2|^2.$$

Let $(\mu, \nu) \in (\mathscr{P}_2(\mathbb{R}^d))^2$, and $\eta \in \Gamma_o(\xi, \nu)$. Integrating the above against η ,

$$u(\nu) - u(\mu) \ge \int_{x \in \mathbb{R}^d, (v_1, v_2) \in (T_x \mathbb{R}^d)^2} \langle v_1, v_2 \rangle \, d\eta(x, v_1, v_2) - \frac{\lambda}{2} d_{\mathcal{W}}^2(\mu, \nu).$$

Distributions	Lift 00000000	Semidifferentials ○○○○○●	Metric case	Conclusion
Example				

Let $u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x)$, and assume that ℓ is λ -semiconvex (but not \mathcal{C}^1 anymore). Denote $\partial_x \ell$ the subdifferential of ℓ at x (a set of vectors). Let $\xi \in \mathscr{P}\left(\bigcup_{x \in \mathbb{R}^d} \{x\} \times \partial_x \ell\right)$ be such that $\pi_x \# \xi = \mu$ (ξ only gives mass to the subdifferential of ℓ). Then, for any $x \in \mathbb{R}^d$, any $v_1 \in \partial_x \ell$ and any $v_2 \in T_x \mathbb{R}^d$,

$$\ell(x+v_2)-\ell(x) \ge \langle v_1, v_2 \rangle - \frac{\lambda}{2} |v_2|^2.$$

Let $(\mu,\nu) \in (\mathscr{P}_2(\mathbb{R}^d))^2$, and $\eta \in \Gamma_o(\xi,\nu)$. Integrating the above against η ,

$$u(\nu) - u(\mu) \ge \int_{x \in \mathbb{R}^d, (v_1, v_2) \in (T_x \mathbb{R}^d)^2} \langle v_1, v_2 \rangle \, d\eta(x, v_1, v_2) - \frac{\lambda}{2} d_{\mathcal{W}}^2(\mu, \nu).$$

Since η is arbitrary, we obtain that $\xi \in \partial.u(\mu)$.

Distributions	Lift	Semidifferentials	Metric case	Conclusion
0000	00000000	0000000	●000	

Table of Contents

Starting point: distributions and the Otto calculus

Lifting: the Lions derivative Extrinsic formulation Intrinsic formulation

Geometric point of view: semidifferentials The regular case The general case

Insights from the metric point of view

Distributions	Lift 00000000	Semidifferentials	Metric case 0●00	Conclusion

Differentiate in length spaces

Def 9 – **Metric slope** Let (X, d) be a metric space. The metric slope of a map $u : X \to \mathbb{R}$ at the point x is given by

$$|\nabla u(x)| \coloneqq \varlimsup_{y \to x} \frac{|u(y) - u(x)|}{d(x,y)}$$

Distributions 0000	Lift 00000000	Semidifferentials	Metric case 0●00	Conclusion
Differentiate ir	length spaces			

Def 9 – **Metric slope** Let (X, d) be a metric space. The metric slope of a map $u : X \to \mathbb{R}$ at the point x is given by

$$|\nabla u(x)| \coloneqq \varlimsup_{y \to x} \frac{|u(y) - u(x)|}{d(x,y)}.$$

Metric slopes are used to formulate equations in (length) metric spaces, for instance in [AGS05, Vil09, Oht09] on gradient flows, of [GNT08, HK15, GŚ15a, GŚ15b, GHN15] on eikonal-type equations.

Distributions	Lift 00000000	Semidifferentials	Metric case 0●00	Conclusion

Differentiate in length spaces

Def 9 – **Metric slope** Let (X, d) be a metric space. The metric slope of a map $u : X \to \mathbb{R}$ at the point x is given by

$$|\nabla u(x)| \coloneqq \varlimsup_{y \to x} \frac{|u(y) - u(x)|}{d(x, y)}.$$

Metric slopes are used to formulate equations in (length) metric spaces, for instance in [AGS05, Vil09, Oht09] on gradient flows, of [GNT08, HK15, GŚ15a, GŚ15b, GHN15] on eikonal-type equations.

(Last) example: let $u(\mu) = \int_{x \in \mathbb{R}^d} \ell(x) d\mu$ with $\ell \in \mathcal{C}_b^2$. Then $|\nabla^+ u(\mu)| = \int_{x \in \mathbb{R}^d} |\nabla \ell(x)| d\mu(x)$.

Distributions	Lift 00000000	Semidifferentials	Metric case 00●0	Conclusion
Gradient flows				

In [AGS05], general gradient flows are studied in metric spaces. They want to give a meaning to curves satisfying

$$\frac{d}{dt}y(t) = -\nabla\Phi(y(t)), \qquad y(0) = y_0.$$

¹Under the assumptions of [AGS05, Theorem 11.3.2].

Distributions 0000	Lift 00000000	Semidifferentials	Metric case 00●0	Conclusion

Gradient flows

In [AGS05], general gradient flows are studied in metric spaces. They want to give a meaning to curves satisfying

$$\frac{d}{dt}y(t) = -\nabla\Phi(y(t)), \qquad y(0) = y_0.$$

To this aim, a numerical scheme is designed, and an approximating sequence $(y^N)_N$ is computed. In the case of the Wasserstein space, Ambrosio, Gigli and Savaré showed that¹

- the limit \overline{y} exists and satisfies an axiomatic definition of gradient curve,

¹Under the assumptions of [AGS05, Theorem 11.3.2].

Distributions 0000	Lift 00000000	Semidifferentials	Metric case 00●0	Conclusion

Gradient flows

In [AGS05], general gradient flows are studied in metric spaces. They want to give a meaning to curves satisfying

$$\frac{d}{dt}y(t) = -\nabla\Phi(y(t)), \qquad y(0) = y_0.$$

To this aim, a numerical scheme is designed, and an approximating sequence $(y^N)_N$ is computed. In the case of the Wasserstein space, Ambrosio, Gigli and Savaré showed that¹

- the limit \overline{y} exists and satisfies an axiomatic definition of gradient curve,
- an appropriate generalization of $\frac{d}{dt}\overline{y}(t)$ converges to an element of $\partial.\Phi(\overline{y}(t))$.

¹Under the assumptions of [AGS05, Theorem 11.3.2].

Distributions 0000	Lift 00000000	Semidifferentials	Metric case 00●0	Conclusion

Gradient flows

In [AGS05], general gradient flows are studied in metric spaces. They want to give a meaning to curves satisfying

$$\frac{d}{dt}y(t) = -\nabla\Phi(y(t)), \qquad y(0) = y_0.$$

To this aim, a numerical scheme is designed, and an approximating sequence $(y^N)_N$ is computed. In the case of the Wasserstein space, Ambrosio, Gigli and Savaré showed that¹

- the limit \overline{y} exists and satisfies an axiomatic definition of gradient curve,
- an appropriate generalization of $\frac{d}{dt}\overline{y}(t)$ converges to an element of $\partial . \Phi(\overline{y}(t))$.

The regular tangent space $\partial \Phi$ may be two small (case of $\Phi = d^2_{\mathcal{W}}(\cdot, \sigma)$ for instance).

¹Under the assumptions of [AGS05, Theorem 11.3.2].

Eikonal-type equations (HJ depending only on the norm of ∇u)

Canonical example: a minimal time problem

$$-\partial_t u(t,\mu) + \frac{1}{2} \left| \nabla^+ u(t,\mu) \right|^2 = 1, \qquad u(T,\mu) = 0.$$

Canonical example: a minimal time problem

$$-\partial_t u(t,\mu) + \frac{1}{2} \left| \nabla^+ u(t,\mu) \right|^2 = 1, \qquad u(T,\mu) = 0.$$

In [AF14], such equations is studied in geodesic/length spaces by first using metric slopes. They show that

• a definition of viscosity using the generalized semidifferentials is compatible with their metric definition (a solution for the former is a solution for the latter).

Canonical example: a minimal time problem

$$-\partial_t u(t,\mu) + \frac{1}{2} \left| \nabla^+ u(t,\mu) \right|^2 = 1, \qquad u(T,\mu) = 0.$$

In [AF14], such equations is studied in geodesic/length spaces by first using metric slopes. They show that

- a definition of viscosity using the generalized semidifferentials is compatible with their metric definition (a solution for the former is a solution for the latter).
- it is no longer the case when restricted to the regular semidifferentials.

Canonical example: a minimal time problem

$$-\partial_t u(t,\mu) + \frac{1}{2} \left| \nabla^+ u(t,\mu) \right|^2 = 1, \qquad u(T,\mu) = 0.$$

In [AF14], such equations is studied in geodesic/length spaces by first using metric slopes. They show that

- a definition of viscosity using the generalized semidifferentials is compatible with their metric definition (a solution for the former is a solution for the latter).
- it is no longer the case when restricted to the regular semidifferentials.

The construction of generalized subdifferentials in [AF14] is linked to the tangent cone for curved spaces, explored for the Wasserstein case in [Gig08] (see [AKP22] for material on curved spaces).

	Distributions	Lift 00000000	Semidifferentials	Metric case 0000	Conclusion ●○
--	---------------	------------------	-------------------	---------------------	------------------

The derivatives of the linear map in one glance

Recall that $u:\mathscr{P}_2(\mathbb{R}^d)$ is defined as

$$u(\mu) \coloneqq \int_{x \in \mathbb{R}^d} \ell(x) d\mu(x).$$

Distributional derivative	Lions derivative	Linear derivative	Natural derivative	Regular subdifferential	General subdifferential
$grad_{\mu} u(\mu)$	$\partial_{\mu} u(\mu)$	$rac{\delta u}{\delta \mu}(\mu,\cdot)$	$D_{\mu}u(\mu,\cdot)$	$\partial.u(\mu)$, $ abla_{\!\scriptscriptstyle W} u$	$\boldsymbol{\partial}.u(\mu)$
$-\operatorname{div}(\mu abla\ell)$	$ abla \ell$	l	$ abla \ell$	$ abla \ell$, select $^\circ$ of $\partial \ell$	$ abla \ell \# \mu, \ \mathscr{P}(Gr(\partial \ell))$
$\operatorname{distribution,} \ \operatorname{duality} \operatorname{with} \ \mathcal{C}^1_c(\mathbb{R}^d,\mathbb{R})$	element of $L^2_\mu(\mathbb{R}^d,\mathbb{R}^d)$	element of $L^2_\mu(\mathbb{R}^d,\mathbb{R})$	element of $L^2_\mu(\mathbb{R}^d,\mathbb{R}^d)$	element of $T_\mu \mathscr{P}_2(\mathbb{R}^d)$	element of $oldsymbol{T}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$

Distributions	Lift 00000000	Semidifferentials	Metric case	Conclusion ○●
Conclusion				

• The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for instance the master equation with smooth coefficients), and emerges naturally from the modelization.

Distributions 0000	Lift 00000000	Semidifferentials	Metric case	Conclusion ○●
Conclusion				

- The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for instance the master equation with smooth coefficients), and emerges naturally from the modelization.
- The W-differentiability, constructed in a more geometric fashion, has been reconciled with the L-differentiability since they coincide on sufficiently smooth functions.

Distributions	Lift 00000000	Semidifferentials	Metric case	Conclusion ○●
Conclusion				

- The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for instance the master equation with smooth coefficients), and emerges naturally from the modelization.
- The W-differentiability, constructed in a more geometric fashion, has been reconciled with the L-differentiability since they coincide on sufficiently smooth functions.
- Whenever the map u is not differentiable, generalized subdifferentials (although less maniable) are more suited than regular ones.

Distributions	Lift 00000000	Semidifferentials	Metric case	Conclusion ○●
Conclusion				

- The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for instance the master equation with smooth coefficients), and emerges naturally from the modelization.
- The W-differentiability, constructed in a more geometric fashion, has been reconciled with the L-differentiability since they coincide on sufficiently smooth functions.
- Whenever the map u is not differentiable, generalized subdifferentials (although less maniable) are more suited than regular ones.

Open questions:

• How to get out of vector spaces?

Distributions	Lift 00000000	Semidifferentials	Metric case	Conclusion ○●
Conclusion				

- The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for instance the master equation with smooth coefficients), and emerges naturally from the modelization.
- The W-differentiability, constructed in a more geometric fashion, has been reconciled with the L-differentiability since they coincide on sufficiently smooth functions.
- Whenever the map u is not differentiable, generalized subdifferentials (although less maniable) are more suited than regular ones.

Open questions:

- How to get out of vector spaces?
- Is there an existence theorem to dig for continuity equations written as $\partial_t \mu_t = -\operatorname{div}(\mu_t F(\mu_t))$, where $F[\mu_t]$ is a plan in $T_\mu \mathscr{P}_2(\mathbb{R}^d)$? Can this be posed pointwise in time, and under which condition does existence hold?

Distributions	Lift 00000000	Semidifferentials	Metric case 0000	Conclusion 00
		Thank you!		
[AF14]	Luigi Ambrosio and Jin Feng. On a class of first order Hamilton- Journal of Differential Equations, 2		ces.	
[AG08]	Luigi Ambrosio and Wilfrid Gangb Hamiltonian ODEs in the Wassers Communications on Pure and App	tein space of probability measu		
[AGS05]	Luigi Ambrosio, Nicola Gigli, and G Gradient Flows. Lectures in Mathematics ETH Zür		2005.	
[AKP22]	Stephanie Alexander, Vitali Kapov Alexandrov geometry: Foundations			
[BIRS19]	Matteo Burzoni, Vicenzo Ignazio, Viscosity Solutions for Controlled I 2019.			

Distributions	Lift 00000000	Semidifferentials	Metric case 0000	Conclusion
[BL94]	Nicolas Bouleau and Dominique Lépingle Numerical Methods for Stochastic Proces 1994.			
[BY19]	Alain Bensoussan and Sheung Chi Phillip Control problem on space of random vari ESAIM: Control, Optimisation and Calcu	ables and master equation.		
[Car13]	Pierre Cardaliaguet. Notes on Mean Field Games. page 59, 2013.			
[CCD15]	Jean-François Chassagneux, Dan Crisan, A Probabilistic approach to classical solut 2015.		large population equilibria, A	April
[CD18a]	René Carmona and François Delarue. Probabilistic Theory of Mean Field Game Stochastic Modelling.	es with Applications I, volume 83	of Probability Theory and	

Springer International Publishing, Cham, 2018.

Distributions 0000	Lift 000000000	Semidifferentials	Metric case	Conclusion

[CD18b] René Carmona and François Delarue.

Probabilistic Theory of Mean Field Games with Applications II, volume 84 of Probability Theory and Stochastic Modelling.

Springer International Publishing, Cham, 2018.

- [CDLL19] Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions. The Master Equation and the Convergence Problem in Mean Field Games. Number 201 in Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2019.
- [CGK+22] Andrea Cosso, Fausto Gozzi, Idris Kharroubi, Huyên Pham, and Mauro Rosestolato. Master Bellman equation in the Wasserstein space: Uniqueness of viscosity solutions, February 2022.
- [CLS18] Christa Cuchiero, Martin Larsson, and Sara Svaluto-Ferro. Probability measure-valued polynomial diffusions, July 2018.
- [CQ08] P. Cardaliaguet and M. Quincampoix. Deterministic differential games under probability knowledge of initial condition. International Game Theory Review, 10(01):1–16, March 2008.

[FK09] Jin Feng and Markos Katsoulakis. A Comparison Principle for Hamilton–Jacobi Equations Related to Controlled Gradient Flows in Infinite Dimensions.

Archive for Rational Mechanics and Analysis, 192(2):275–310, May 2009.

Distributions	Lift 00000000	Semidifferentials	Metric case	Conclusion
[FN12]	Jin Feng and Truyen Nguyen. Hamilton–Jacobi equations in space Journal de Mathématiques Pures et		5	/S.
[FV79]	Wendell H. Fleming and Michel Vic Some Measure-Valued Markov Proc Indiana University Mathematics Jou	cesses in Population Genetics	Theory.	
[GHN15]	Yoshikazu Giga, Nao Hamamuki, an Eikonal equations in metric spaces. Transactions of the American Math		6, January 2015.	
[Gig08]	Nicola Gigli. On the Geometry of the Space of F Distance. PhD thesis, Scuola Normale Superi		with the Quadratic Optimal	Transport
[GNT08]	Wilfrid Gangbo, Truyen Nguyen, an Hamilton-Jacobi Equations in the V Methods and Applications of Analy	Vasserstein Space.		
[GŚ14]	Wilfrid Gangbo and Andrzej Świech Optimal transport and large numbe Discrete and Continuous Dynamica	er of particles.	2014.	

Distributions	Lift 00000000	Semidifferentials	Metric case	Conclusion
[GŚ15a]	Wilfrid Gangbo and Andrzej Świę Existence of a solution to an equa Journal of Differential Equations,	tion arising from the theory of I		
[GŚ15b]	Wilfrid Gangbo and Andrzej Świę Metric viscosity solutions of Hami Calculus of Variations and Partial	lton–Jacobi equations dependin		
[GT19]	Wilfrid Gangbo and Adrian Tudora On differentiability in the Wassers Journal de Mathématiques Pures	tein space and well-posedness fo		ıs.
[HK15]	Ryan Hynd and Hwa Kil Kim. Value functions in the Wassersteir Journal of Functional Analysis, 26	•		
[JKO98]	Richard Jordan, David Kinderlehre The Variational Formulation of the SIAM Journal on Mathematical A	e Fokker-Planck Equation.	98.	
[JMQ20]	Chloé Jimenez, Antonio Marigond Optimal control of multiagent syst			

Calculus of Variations and Partial Differential Equations, 59, March 2020.

Distributions 0000	Lift 00000000	Semidifferentials	Metric case	Conclusion

[JMQ22] Chloé Jimenez, Antonio Marigonda, and Marc Quincampoix. Dynamical systems and Hamilton-Jacobi-Bellman equations on the Wasserstein space and their L2 representations. 2022.

- [Lio06] Pierre-Louis Lions. Jeux à champ moyen, 2006.
- [MQ18] Antonio Marigonda and Marc Quincampoix. Mayer control problem with probabilistic uncertainty on initial positions. Journal of Differential Equations, 264(5):3212–3252, March 2018.
- [MZ22] Chenchen Mou and Jianfeng Zhang. Wellposedness of Second Order Master Equations for Mean Field Games with Nonsmooth Data, January 2022.
- [Oht09] Shin-Ichi Ohta. Gradient Flows on Wasserstein Spaces over Compact Alexandrov Spaces. American Journal of Mathematics, 131(2):475–516, 2009.

[Ott01] Felix Otto. The Geometry of Dissipative Evolution Equations: The Porous Medium Equation. Communications in Partial Differential Equations, 26(1-2):101–174, January 2001.

Distributions	Lift 00000000	Semidifferentials	Metric case	Conclusion	
[PW17]	Huyên Pham and Xiaoli Wei. Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics, January 2017.				
[PW18]	Huyên Pham and Xiaoli Wei. Bellman equation and viscosity solutic ESAIM: Control, Optimisation and Ca		•		

[Sal23] William Salkeld. Higher order Lions-Taylor expansions, March 2023.

[Vil09] Cédric Villani.

Optimal Transport, volume 338 of *Grundlehren Der Mathematischen Wissenschaften*. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.