Quadratic is the new smooth

A notion of viscosity for control problems in the Wasserstein space over \mathbb{R}^d

Control problems	Wasserstein	Viscosity	Comparison	Results
•000	000000	0000	000000	0000000

Table of Contents

A general introduction to control problems

Elements of Wasserstein spaces and the associated difficulties

Viscosity in the space of measures

A chirurgical intervention in variable doubling for the comparison principle

Results and perspectives

Control problems ○●○○	Wasserstein 000000	Viscosity 0000	Comparison 000000	Results 0000000
Definitions				
Let				

• $[0,T] imes \Omega$ an underlying space,

Control problems	Wasserstein	Viscosity	Comparison	Results
○●○○	000000	0000	000000	
Definitions				

Let

- $[0,T] \times \Omega$ an underlying space,
- measurable controls $u \in \mathcal{U}_{[0,T]}$, $u(\cdot): [0,T] \mapsto U \subset \mathbb{R}^{\kappa}$ compact,

Control problems	Wasserstein	Viscosity	Comparison	Results
○●○○	000000	0000	000000	

Definitions

Let

- $[0,T] \times \Omega$ an underlying space,
- measurable controls $u \in \mathcal{U}_{[0,T]}$, $u(\cdot): [0,T] \mapsto U \subset \mathbb{R}^{\kappa}$ compact,
- A notion of ODE satisfying

$$\begin{cases} y_0^{0,x,u}=x\in\Omega,\\ \frac{d}{dt}y_t^{0,x,u}=f(y_t^{0,x,u},u(t)), \end{cases}$$

Control problems	Wasserstein	Viscosity	Comparison	Results
○●○○	000000	0000	000000	0000000

Definitions

Let

- $[0,T] \times \Omega$ an underlying space,
- measurable controls $u \in \mathcal{U}_{[0,T]}$, $u(\cdot): [0,T] \mapsto U \subset \mathbb{R}^{\kappa}$ compact,
- A notion of ODE satisfying

$$\begin{cases} y_0^{0,x,u} = x \in \Omega, \\ \frac{d}{dt} y_t^{0,x,u} = f(y_t^{0,x,u}, u(t)), \end{cases}$$

• A terminal cost $\mathcal{J}: \Omega \mapsto \mathbb{R}$.

Control problems	Wasserstein	Viscosity	Comparison	Results
0●00	000000	0000	000000	0000000

Definitions

Let

- $[0,T]\times \Omega$ an underlying space,
- measurable controls $u \in \mathcal{U}_{[0,T]}$, $u(\cdot): [0,T] \mapsto U \subset \mathbb{R}^{\kappa}$ compact,
- A notion of ODE satisfying

$$\begin{cases} y_0^{0,x,u} = x \in \Omega, \\ \frac{d}{dt} y_t^{0,x,u} = f(y_t^{0,x,u}, u(t)), \end{cases}$$

• A terminal cost $\mathcal{J}: \Omega \mapsto \mathbb{R}$.

Given $x \in \Omega$, find $u(\cdot)$ such that

 $\mathcal{J}(y_T^{0,x,u}) \leqslant \mathcal{J}(y_T^{0,x,v}) \quad \forall v \in \mathcal{U}_{[0,T]}.$

Let the value function $V: [0,T] \times \Omega \mapsto \mathbb{R}$ be given by $V(t,x) \coloneqq \inf_{u(\cdot) \in \mathcal{U}_{[t,T]}} \mathcal{J}(y_T^{t,x,u}).$

Let the value function $V: [0,T] \times \Omega \mapsto \mathbb{R}$ be given by $V(t,x) \coloneqq \inf_{u(\cdot) \in \mathcal{U}_{[t,T]}} \mathcal{J}(y_T^{t,x,u})$.

Bellman's principle For all $h \in [0, T - t]$, $V(t, x) = \inf_{u(\cdot) \in \mathcal{U}_{[t,t+h]}} V(t + h, y_{t+h}^{t,x,u})$.

Let the value function $V: [0,T] \times \Omega \mapsto \mathbb{R}$ be given by $V(t,x) \coloneqq \inf_{u(\cdot) \in \mathcal{U}_{[t,T]}} \mathcal{J}(y_T^{t,x,u}).$

Bellman's principle For all $h \in [0, T-t]$, $V(t, x) = \inf_{u(\cdot) \in \mathcal{U}_{[t,t+h]}} V(t+h, y_{t+h}^{t,x,u})$.

If $u(\cdot)$ is optimal, then for all $h \in [0, T-t]$,

$$V(t,x) = \mathcal{J}(y_T^{t,x,u}) = V\left(t+h, y_{t+h}^{t,x,u}\right)$$

Let the value function $V: [0,T] \times \Omega \mapsto \mathbb{R}$ be given by $V(t,x) \coloneqq \inf_{u(\cdot) \in \mathcal{U}_{[t,T]}} \mathcal{J}(y_T^{t,x,u}).$

Bellman's principle For all $h \in [0, T-t]$, $V(t, x) = \inf_{u(\cdot) \in \mathcal{U}_{[t,t+h]}} V(t+h, y_{t+h}^{t,x,u})$.

If $u(\cdot)$ is optimal, then for all $h \in [0, T-t]$,

$$V(t,x) = \mathcal{J}(y_T^{t,x,u}) = V\left(t+h, y_{t+h}^{t,x,u}\right)$$
$$\inf_{b \in f(x,U)} \begin{pmatrix} \partial_t V & \nabla V \end{pmatrix} \begin{pmatrix} 1 \\ b \end{pmatrix} = 0$$

Let the value function $V: [0,T] \times \Omega \mapsto \mathbb{R}$ be given by $V(t,x) \coloneqq \inf_{u(\cdot) \in \mathcal{U}_{[t,T]}} \mathcal{J}(y_T^{t,x,u})$.

Bellman's principle For all $h \in [0, T - t]$, $V(t, x) = \inf_{u(\cdot) \in \mathcal{U}_{[t,t+h]}} V(t + h, y_{t+h}^{t,x,u})$.

If $u(\cdot)$ is optimal, then for all $h\in[0,T-t]$,

$$V(t,x) = \mathcal{J}(y_T^{t,x,u}) = V\left(t+h, y_{t+h}^{t,x,u}\right)$$
$$\inf_{b \in f(x,U)} \left(\partial_t V \quad \nabla V\right) \begin{pmatrix} 1\\ b \end{pmatrix} = 0$$

$$-\partial_t V(t,x) + \sup_{u \in U} - \langle \nabla V(t,x), f(x,u) \rangle = 0.$$
 (HJB)

Control problems	Wasserstein	Viscosity	Comparison	Results
000●	000000	0000	000000	0000000

Viscosity solutions

Consider more generally the HJ equation in $Q\coloneqq]0,T[\times\Omega$

$$-\partial_t V(t,x) + H(x,\nabla V(t,x)) = 0, \qquad V(T,x) = \mathcal{J}(x).$$
(HJ)

Control problems	Wasserstein	Viscosity	Comparison	Results
○○○●	000000	0000	000000	0000000
Viscosity solutions				

Consider more generally the HJ equation in $Q \coloneqq]0, T[\times \Omega]$

$$-\partial_t V(t,x) + H(x,\nabla V(t,x)) = 0, \qquad V(T,x) = \mathcal{J}(x).$$
(HJ)

Since solutions are not everywhere differentiable,

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000000	0000000
Viscosity solutions				

Consider more generally the HJ equation in $Q \coloneqq]0, T[\times \Omega]$

$$-\partial_t V(t,x) + H(x,\nabla V(t,x)) = 0, \qquad V(T,x) = \mathcal{J}(x).$$
(HJ)

Since solutions are not everywhere differentiable, but weak solutions are not unique,

Control problems	Wasserstein	Viscosity	Comparison	Results
000●	000000	0000	000000	0000000
	1			

Viscosity solutions

Consider more generally the HJ equation in $Q\coloneqq]0,T[\times\Omega$

$$-\partial_t V(t,x) + H(x,\nabla V(t,x)) = 0, \qquad V(T,x) = \mathcal{J}(x).$$
(HJ)

Since solutions are not everywhere differentiable, but weak solutions are not unique,

A map $v: \overline{Q} \mapsto \mathbb{R}$ is a sub/supersolution of (HJ) if $\pm v$ is u.s.c, and for all $\varphi \in \mathcal{C}^1(Q, \mathbb{R})$ such that $\pm (v - \varphi)$ is maximized at $(t, x) \in Q$,

 $\pm \left(-\partial_t \varphi(t, x) + H\left(x, \nabla \varphi(t, x)\right)\right) \leqslant 0.$

Control problems	Wasserstein	Viscosity	Comparison	Results
○○○●	000000	0000	000000	
Viscosity solutions				

Consider more generally the HJ equation in $Q \coloneqq]0, T[\times \Omega]$

$$-\partial_t V(t,x) + H(x,\nabla V(t,x)) = 0, \qquad V(T,x) = \mathcal{J}(x).$$
(HJ)

Since solutions are not everywhere differentiable, but weak solutions are not unique,

A map $v: \overline{Q} \mapsto \mathbb{R}$ is a sub/supersolution of (HJ) if $\pm v$ is u.s.c, and for all $\varphi \in C^1(Q, \mathbb{R})$ such that $\pm (v - \varphi)$ is maximized at $(t, x) \in Q$,

 $\pm \left(-\partial_t \varphi(t, x) + H\left(x, \nabla \varphi(t, x)\right)\right) \leqslant 0.$

A map $v : \overline{Q} \mapsto \mathbb{R}$ is a solution if it is a subsolution, a supersolution, and if $v(T, x) = \mathcal{J}(x)$.

Control problems	Wasserstein 000000	Viscosity 0000	Comparison	Results 0000000

Viscosity solutions

Consider more generally the HJ equation in $Q\coloneqq]0,T[\times\Omega$

$$-\partial_t V(t,x) + H(x,\nabla V(t,x)) = 0, \qquad V(T,x) = \mathcal{J}(x).$$
(HJ)

Since solutions are not everywhere differentiable, but weak solutions are not unique,

A map $v: \overline{Q} \mapsto \mathbb{R}$ is a sub/supersolution of (HJ) if $\pm v$ is u.s.c, and for all $\varphi \in C^1(Q, \mathbb{R})$ such that $\pm (v - \varphi)$ is maximized at $(t, x) \in Q$,

 $\pm \left(-\partial_t \varphi(t, x) + H\left(x, \nabla \varphi(t, x)\right)\right) \leqslant 0.$

A map $v : \overline{Q} \mapsto \mathbb{R}$ is a solution if it is a subsolution, a supersolution, and if $v(T, x) = \mathcal{J}(x)$.

Another definition by super/subdifferentials.

Control problems	Wasserstein	Viscosity	Comparison	Results
	●00000	0000	000000	0000000

Table of Contents

A general introduction to control problems

Elements of Wasserstein spaces and the associated difficulties

Viscosity in the space of measures

A chirurgical intervention in variable doubling for the comparison principle

Results and perspectives

Control problems	Wasserstein	Viscosity	Comparison	Results
	0●0000	0000	000000	0000000
Definitions				

$$d_{\mathcal{W}}^{2}\left(\mu,\nu\right) \coloneqq \inf\left\{ \int_{(x,y)\in(\mathbb{R}^{d})^{2}} d^{2}(x,y)d\eta(x,y) \ \left| \ \eta\in\mathscr{P}((\mathbb{R}^{d})^{2}), \ \int_{y} d\eta(\cdot,y) = \mu, \ \int_{x} d\eta(x,\cdot) = \nu \right\} \right\}$$

Control problems	Wasserstein	Viscosity	Comparison	Results
	0●0000	0000	000000	0000000
Definitions				

$$d^2_{\mathcal{W}}\left(\mu,\nu\right) \coloneqq \inf\left\{\int_{(x,y)\in(\mathbb{R}^d)^2} d^2(x,y)d\eta(x,y) \; \middle| \; \eta \in \mathscr{P}((\mathbb{R}^d)^2), \; \int_y d\eta(\cdot,y) = \mu, \; \int_x d\eta(x,\cdot) = \nu\right\}$$

Pushforward of measures Let $g : \mathbb{R}^d \mapsto \mathbb{R}^d$ be a measurable map, and $\mu \in \mathscr{P}(\mathbb{R}^d)$. The pushforward $g \# \mu \in \mathscr{P}(\mathbb{R}^d)$ is given by $[g \# \mu](A) = \mu \left(g^{-1}(A)\right)$ for all $A \in \mathcal{B}_{\mathbb{R}^d}$.

Control problems	Wasserstein	Viscosity	Comparison	Results
	0●0000	0000	000000	0000000

$$d^2_{\mathcal{W}}(\mu,\nu) \coloneqq \inf\left\{\int_{(x,y)\in(\mathbb{R}^d)^2} d^2(x,y)d\eta(x,y) \ \middle| \ \eta \in \mathscr{P}((\mathbb{R}^d)^2), \ \int_y d\eta(\cdot,y) = \mu, \ \int_x d\eta(x,\cdot) = \nu\right\}$$

Pushforward of measures Let $g : \mathbb{R}^d \mapsto \mathbb{R}^d$ be a measurable map, and $\mu \in \mathscr{P}(\mathbb{R}^d)$. The pushforward $g \# \mu \in \mathscr{P}(\mathbb{R}^d)$ is given by $[g \# \mu](A) = \mu \left(g^{-1}(A)\right)$ for all $A \in \mathcal{B}_{\mathbb{R}^d}$.

Definitions

$$d^2_{\mathcal{W}}(\mu,\nu) \coloneqq \inf\left\{\int_{(x,y)\in(\mathbb{R}^d)^2} d^2(x,y)d\eta(x,y) \ \middle| \ \eta \in \mathscr{P}((\mathbb{R}^d)^2), \ \int_y d\eta(\cdot,y) = \mu, \ \int_x d\eta(x,\cdot) = \nu\right\}$$

Pushforward of measures Let $g : \mathbb{R}^d \mapsto \mathbb{R}^d$ be a measurable map, and $\mu \in \mathscr{P}(\mathbb{R}^d)$. The pushforward $g \# \mu \in \mathscr{P}(\mathbb{R}^d)$ is given by $[g \# \mu](A) = \mu \left(g^{-1}(A)\right)$ for all $A \in \mathcal{B}_{\mathbb{R}^d}$.

Control problems	Wasserstein	Viscosity	Comparison	Results
	0●0000	0000	000000	0000000
Definitions				

$$d^2_{\mathcal{W}}(\mu,\nu) \coloneqq \inf\left\{\int_{(x,y)\in(\mathbb{R}^d)^2} d^2(x,y)d\eta(x,y) \ \middle| \ \eta \in \mathscr{P}((\mathbb{R}^d)^2), \ \int_y d\eta(\cdot,y) = \mu, \ \int_x d\eta(x,\cdot) = \nu\right\}$$

Pushforward of measures Let $g : \mathbb{R}^d \mapsto \mathbb{R}^d$ be a measurable map, and $\mu \in \mathscr{P}(\mathbb{R}^d)$. The pushforward $g \# \mu \in \mathscr{P}(\mathbb{R}^d)$ is given by $[g \# \mu](A) = \mu \left(g^{-1}(A)\right)$ for all $A \in \mathcal{B}_{\mathbb{R}^d}$.

Control problems	Wasserstein	Viscosity	Comparison	Results
	00●000	0000	000000	000000
Moving $(1/2)$: t	the exponential			

Let $(\mu, \nu) \in \mathscr{P}_2(\mathbb{R}^d)^2$. Each $\eta \in \Gamma_o(\mu, \nu)$ parametrizes a geodesic by $\mu_t \coloneqq ((1-t)\pi_x + t\pi_y) \# \eta$

Control problems	Wasserstein	Viscosity	Comparison	Results
	00●000	0000	000000	000000
Moving $(1/2)$: th	e exponential			

Let $(\mu,\nu) \in \mathscr{P}_2(\mathbb{R}^d)^2$. Each $\eta \in \Gamma_o(\mu,\nu)$ parametrizes a geodesic by

 $\mu_t \coloneqq \left((1-t)\pi_x + t\pi_y \right) \#\eta = \left(\pi_x + t \left(\pi_y - \pi_x \right) \right) \#\eta$

Control problems	Wasserstein	Viscosity	Comparison	Results
	00●000	0000	000000	0000000

Moving (1/2): the exponential

Let $(\mu, \nu) \in \mathscr{P}_2(\mathbb{R}^d)^2$. Each $\eta \in \Gamma_o(\mu, \nu)$ parametrizes a geodesic by

 $\mu_t := \left((1-t)\pi_x + t\pi_y \right) \#\eta = \left(\pi_x + t \left(\pi_y - \pi_x \right) \right) \#\eta = \left(\pi_x + t\pi_v \right) \# \left[(\pi_x, \pi_y - \pi_x) \#\eta \right].$

Moving (1/2): the exponential

Let $(\mu, \nu) \in \mathscr{P}_2(\mathbb{R}^d)^2$. Each $\eta \in \Gamma_o(\mu, \nu)$ parametrizes a geodesic by

 $\mu_t \coloneqq ((1-t)\pi_x + t\pi_y) \,\#\eta = (\pi_x + t\,(\pi_y - \pi_x)) \,\#\eta = (\pi_x + t\pi_v) \,\# \left[(\pi_x, \pi_y - \pi_x) \#\eta \right].$

Define $\mathscr{P}_{\mu}(T\mathbb{R}^d)$ as the set of *initial velocities* $\xi \in \mathscr{P}(T\mathbb{R}^d)$ such that $\pi_x \# \xi = \mu$, and

Moving (1/2): the exponential

Let $(\mu, \nu) \in \mathscr{P}_2(\mathbb{R}^d)^2$. Each $\eta \in \Gamma_o(\mu, \nu)$ parametrizes a geodesic by

$$\mu_t \coloneqq \left((1-t)\pi_x + t\pi_y \right) \#\eta = \left(\pi_x + t \left(\pi_y - \pi_x \right) \right) \#\eta = \left(\pi_x + t\pi_v \right) \# \left[(\pi_x, \pi_y - \pi_x) \#\eta \right].$$

Define $\mathscr{P}_{\mu}(T\mathbb{R}^d)$ as the set of *initial velocities* $\xi \in \mathscr{P}(T\mathbb{R}^d)$ such that $\pi_x \# \xi = \mu$, and

•
$$\mathscr{P}_{\mu,o}(T\mathbb{R}^d) \coloneqq \left\{ (\pi_x, \pi_y - \pi_x) \# \eta \mid \eta \in \Gamma_o\left(\mu, \mathscr{P}_2(\mathbb{R}^d)\right) \right\},$$

Control problemsWasserstein
OctoberViscosity
OctoberComparison
CondectionResults
CondectionMoving (1/2): the exponentialLet
$$(\mu, \nu) \in \mathscr{P}_2(\mathbb{R}^d)^2$$
. Each $\eta \in \Gamma_o(\mu, \nu)$ parametrizes a geodesic by
 $\mu_t := ((1 - t)\pi_x + t\pi_y) \#\eta = (\pi_x + t(\pi_y - \pi_x)) \#\eta = (\pi_x + t\pi_v) \# [(\pi_x, \pi_y - \pi_x) \#\eta]$.Define $\mathscr{P}_{\mu}(T\mathbb{R}^d)$ as the set of initial velocities $\xi \in \mathscr{P}(T\mathbb{R}^d)$

such that $\pi_x \# \xi = \mu$, and

•
$$\mathscr{P}_{\mu,o}(T\mathbb{R}^d) \coloneqq \left\{ (\pi_x, \pi_y - \pi_x) \# \eta \mid \eta \in \Gamma_o\left(\mu, \mathscr{P}_2(\mathbb{R}^d)\right) \right\},$$

•
$$\exp_{\mu}(t \cdot \xi) \coloneqq (\pi_x + t\pi_v) \# \xi \qquad \forall \xi \in \mathscr{P}_{\mu}(T\mathbb{R}^d),$$

Control problemsWasserstein
$$\infty \bullet \infty \bullet \infty$$
Viscosity
 $\infty \bullet \infty \bullet \infty$ Comparison
 $\infty \bullet \infty \bullet \infty$ ResultsMoving (1/2): the exponentialLet $(\mu, \nu) \in \mathscr{P}_2(\mathbb{R}^d)^2$. Each $\eta \in \Gamma_o(\mu, \nu)$ parametrizes a geodesic by
 $\mu_t := ((1 - t)\pi_x + t\pi_y) \#\eta = (\pi_x + t(\pi_y - \pi_x)) \#\eta = (\pi_x + t\pi_v) \# [(\pi_x, \pi_y - \pi_x) \#\eta].$ Define $\mathscr{P}_{\mu}(T\mathbb{R}^d)$ as the set of *initial velocities* $\xi \in \mathscr{P}(T\mathbb{R}^d)$
such that $\pi_x \# \xi = \mu$, and
• $\mathscr{P}_{\mu,o}(T\mathbb{R}^d) := \{(\pi_x, \pi_y - \pi_x) \#\eta \mid \eta \in \Gamma_o(\mu, \mathscr{P}_2(\mathbb{R}^d))\},$
• $\exp_{\mu}(t \cdot \xi) := (\pi_x + t\pi_v) \# \xi$

•
$$W_{\mu}\left(\xi,\overline{\xi}\right) \coloneqq \lim_{t \searrow 0} \frac{d_{\mathcal{W}}\left(\exp_{\mu}(t\cdot\xi),\exp_{\mu}(t\cdot\overline{\xi})\right)}{t}$$
,

$$\begin{array}{l|c} \hline \label{eq:control problems} & \underline{\operatorname{Wasserstein}}_{\operatorname{COOD}} & \underline{\operatorname{Viscosity}}_{\operatorname{COOD}} & \underline{\operatorname{Coopparison}}_{\operatorname{COOD}} & \underline{\operatorname{Results}}_{\operatorname{COOD}} & \underline{\operatorname{Results}}_{\operatorname{Results}} & \underline{\operatorname{Results}}_{\operatorname{Results}$$

Control problemsWesseretin
CondensionViscosityComparisonResultsMoving (1/2): the exponentialLet
$$(\mu, \nu) \in \mathscr{P}_2(\mathbb{R}^d)^2$$
. Each $\eta \in \Gamma_o(\mu, \nu)$ parametrizes a geodesic by
 $\mu_t := ((1 - t)\pi_x + t\pi_y) \#\eta = (\pi_x + t(\pi_y - \pi_x)) \#\eta = (\pi_x + t\pi_v) \# [(\pi_x, \pi_y - \pi_x) \#\eta].$ Define $\mathscr{P}_{\mu}(T\mathbb{R}^d)$ as the set of initial velocities $\xi \in \mathscr{P}(T\mathbb{R}^d)$
such that $\pi_x \# \xi = \mu$, and $\mathscr{P}_{\mu,o}(T\mathbb{R}^d) := \{(\pi_x, \pi_y - \pi_x) \#\eta \mid \eta \in \Gamma_o(\mu, \mathscr{P}_2(\mathbb{R}^d))\},$
 $\operatorname{exp}_{\mu}(t \cdot \xi) := (\pi_x + t\pi_v) \# \xi \quad \forall \xi \in \mathscr{P}_{\mu}(T\mathbb{R}^d),$
 $\operatorname{exp}_{\mu}(\xi, \overline{\xi}) := \lim_{t \to 0} \frac{d_{W}(\exp_{\mu}(t \cdot \xi), \exp_{\mu}(t \cdot \overline{\xi}))}{t},$
 $\pi^{\mu} : \mathscr{P}_{\mu}(T\mathbb{R}^d) \mapsto T_{\mu} \mathscr{P}_2(T\mathbb{R}^d)$ a partially defined projection.
Now $t \mapsto \exp_{\mu}(t \cdot \xi)$ is a measure analogue of $t \mapsto x + tv$.

Moving (2/2): the continuity equation

We follow solutions $(\mu_s^{t,\nu,u})_{s\in[t,T]}$ of the controlled nonlocal continuity equation (see [AGS05])

$$\mu_t = \nu, \qquad \partial_s \mu_s + \operatorname{div} \left(f(\cdot, \mu_s, u(s)) \mu_s \right) = 0.$$
(CE)

Control problemsWasserstein
000000Viscosity
0000Comparison
000000Results
0000000

Moving (2/2): the continuity equation

We follow solutions $(\mu_s^{t,\nu,u})_{s\in[t,T]}$ of the controlled nonlocal continuity equation (see [AGS05])

$$\mu_t = \nu, \qquad \partial_s \mu_s + \operatorname{div} \left(f(\cdot, \mu_s, u(s)) \mu_s \right) = 0.$$
 (CE)

Solution of (CE) Assume that $f : \mathbb{R}^d \times \mathscr{P}_2(\mathbb{R}^d) \times U \mapsto T\mathbb{R}^d$ is Lip. and bounded. $\mu_s = S_s^{t,\nu,u} \# \nu$, where $S_t^{t,\nu,u}(x) = x$ and $\partial_t S_s^{t,\nu,u} = f\left(S_s^{t,\nu,u}, \mu_s, u(s)\right)$.
Control problemsWasserstein
occooViscosity
occooComparison
occooResults
occoo

Moving (2/2): the continuity equation

We follow solutions $(\mu_s^{t,\nu,u})_{s\in[t,T]}$ of the controlled nonlocal continuity equation (see [AGS05])

$$\mu_t = \nu, \qquad \partial_s \mu_s + \operatorname{div} \left(f(\cdot, \mu_s, u(s)) \mu_s \right) = 0.$$
 (CE)

Solution of (CE) Assume that $f : \mathbb{R}^d \times \mathscr{P}_2(\mathbb{R}^d) \times U \mapsto T\mathbb{R}^d$ is Lip. and bounded. $\mu_s = S_s^{t,\nu,u} \# \nu$, where $S_t^{t,\nu,u}(x) = x$ and $\partial_t S_s^{t,\nu,u} = f\left(S_s^{t,\nu,u}, \mu_s, u(s)\right)$.

Two conflicting notions of *straight lines*:

• convex combinations $\mu_t^{\uparrow} = (1-t)\mu_0 + t\mu_1$ (vertical displacement)

Two conflicting notions of *straight lines*:

- convex combinations $\mu_t^{\uparrow} = (1-t)\mu_0 + t\mu_1$ (vertical displacement)
- geodesics $\vec{\mu}_t = \exp_{\mu}(t \cdot \xi)$ for $\xi \in \mathscr{P}_{\mu,o}(T\mathbb{R}^d)$ (horizontal displacement)

Two conflicting notions of *straight lines*:

- convex combinations $\mu_t^{\uparrow} = (1-t)\mu_0 + t\mu_1$ (vertical displacement)
- geodesics $\vec{\mu}_t = \exp_{\mu}(t \cdot \xi)$ for $\xi \in \mathscr{P}_{\mu,o}(T\mathbb{R}^d)$ (horizontal displacement)

The squared distance $d^2_{\mathcal{W}}(\cdot,\sigma)$ is

• convex along $(\mu_t^{\uparrow})_{t\in[0,1]}$,

Two conflicting notions of *straight lines*:

- convex combinations $\mu_t^{\uparrow} = (1-t)\mu_0 + t\mu_1$ (vertical displacement)
- geodesics $\vec{\mu}_t = \exp_{\mu}(t \cdot \xi)$ for $\xi \in \mathscr{P}_{\mu,o}(T\mathbb{R}^d)$ (horizontal displacement)

The squared distance $d^2_{\mathcal{W}}(\cdot,\sigma)$ is

- convex along $(\mu_t^{\uparrow})_{t\in[0,1]}$,
- semiconcave along $(\vec{\mu_t})_{t \in [0,1]}$ (see [AGS05]):

$$d_{\mathcal{W}}^{2}(\vec{\mu}_{t},\sigma) \ge (1-t)d_{\mathcal{W}}^{2}(\vec{\mu}_{0},\sigma) + td_{\mathcal{W}}^{2}(\vec{\mu}_{1},\sigma) - t(1-t)d_{\mathcal{W}}^{2}(\vec{\mu}_{0},\vec{\mu}_{1}).$$

Two conflicting notions of *straight lines*:

- convex combinations $\mu_t^{\uparrow} = (1-t)\mu_0 + t\mu_1$ (vertical displacement)
- geodesics $\vec{\mu}_t = \exp_{\mu}(t \cdot \xi)$ for $\xi \in \mathscr{P}_{\mu,o}(T\mathbb{R}^d)$ (horizontal displacement)

The squared distance $d^2_{\mathcal{W}}(\cdot,\sigma)$ is

- convex along $(\mu_t^{\uparrow})_{t\in[0,1]}$,
- semiconcave along $(\vec{\mu_t})_{t \in [0,1]}$ (see [AGS05]):

$$\begin{aligned} d_{\mathcal{W}}^2(\vec{\mu}_t,\sigma) &\geq (1-t) d_{\mathcal{W}}^2(\vec{\mu}_0,\sigma) + t d_{\mathcal{W}}^2(\vec{\mu}_1,\sigma) \\ &- t(1-t) d_{\mathcal{W}}^2\left(\vec{\mu}_0,\vec{\mu}_1\right). \end{aligned}$$

Hence directionally differentiable along $t \mapsto \exp_{\mu}(t \cdot \xi)!$

Control problems	Wasserstein	Viscosity	Comparison	Results
	00000●	0000	000000	0000000

Let
$$\mu_n \coloneqq \left(1 - \frac{1}{n^2}\right)\delta_0 + \frac{1}{n^2}\delta_n$$
.

Control problems	Wasserstein	Viscosity	Comparison	Results
	00000●	0000	000000	0000000

Let
$$\mu_n \coloneqq \left(1 - \frac{1}{n^2}\right) \delta_0 + \frac{1}{n^2} \delta_n$$
. On one hand,

$$d_{\mathcal{W}}(\delta_0, \mu_n) = 1 \qquad \forall n \ge 1.$$

Control problems	Wasserstein	Viscosity	Comparison	Results
	00000●	0000	000000	0000000

Let
$$\mu_n \coloneqq \left(1 - \frac{1}{n^2}\right) \delta_0 + \frac{1}{n^2} \delta_n$$
. On one hand,
 $d_{\mathcal{W}}(\delta_0, \mu_n) = 1 \qquad \forall n \ge 1.$
But $\mu_n \xrightarrow[n \to \infty]{\text{narrow}} \delta_0$, since for $\varphi \in \mathcal{C}_b(\mathbb{R}^d, \mathbb{R})$,
 $\langle \varphi, \mu_n \rangle = \left(1 - \frac{1}{n^2}\right) \varphi(0) + \frac{1}{n^2} \varphi(n)$
 $\xrightarrow[n \to \infty]{} \varphi(0).$

Control problems	Wasserstein	Viscosity	Comparison	Results
	00000●	0000	000000	0000000

Let
$$\mu_n := \left(1 - \frac{1}{n^2}\right) \delta_0 + \frac{1}{n^2} \delta_n$$
. On one hand,
 $d_{\mathcal{W}}(\delta_0, \mu_n) = 1 \quad \forall n \ge 1.$
But $\mu_n \xrightarrow[n \to \infty]{n \to \infty} \delta_0$, since for $\varphi \in \mathcal{C}_b(\mathbb{R}^d, \mathbb{R})$,
 $\langle \varphi, \mu_n \rangle = \left(1 - \frac{1}{n^2}\right) \varphi(0) + \frac{1}{n^2} \varphi(n)$
 $\xrightarrow[n \to \infty]{n \to \infty} \varphi(0).$

Without bounds on the support, $\mathscr{P}_2(\mathbb{R}^d)$ is not locally compact.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	●000	000000	0000000

Table of Contents

A general introduction to control problems

Elements of Wasserstein spaces and the associated difficulties

Viscosity in the space of measures

A chirurgical intervention in variable doubling for the comparison principle

Results and perspectives

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	○●○○	000000	0000000
	1 1			

• Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0●00	000000	0000000
A 11 1	19			

• Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.

very powerful results (see [PW18])

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	○●○○	000000	0000000
A 11	I II			

- Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.
 - very powerful results (see [PW18])
 - \blacktriangleright such an X is absolutely not unique (all rearrangements have the same law)

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	○●○○	000000	0000000

- Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.
 - very powerful results (see [PW18])
 - ▶ such an X is absolutely not unique (all rearrangements have the same law)
 - initiates research on rearrangement-invariant maps

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	○●○○	000000	0000000

- Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.
 - very powerful results (see [PW18])
 - ▶ such an X is absolutely not unique (all rearrangements have the same law)
 - initiates research on rearrangement-invariant maps
 - ▶ one could hope for a more intrinsic definition.

Control problems	Wasserstein 000000	Viscosity ○●○○	Comparison 000000	Results

- Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.
 - very powerful results (see [PW18])
 - \blacktriangleright such an X is absolutely not unique (all rearrangements have the same law)
 - initiates research on rearrangement-invariant maps
 - ▶ one could hope for a more intrinsic definition.
- Subdifferential theory Define appropriately the sub/superdifferential.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0●00	000000	0000000

- Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.
 - very powerful results (see [PW18])
 - \blacktriangleright such an X is absolutely not unique (all rearrangements have the same law)
 - initiates research on rearrangement-invariant maps
 - ▶ one could hope for a more intrinsic definition.
- Subdifferential theory Define appropriately the sub/superdifferential.
 - ▶ several definitions in use: with velocities ([AGS05]) or with elements of $L^2_{\mu}(\mathbb{R}^d, \mathbb{R}^d)$ in a strict ([GT19]) or large way ([JMQ20])

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0●00	000000	0000000

- Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.
 - very powerful results (see [PW18])
 - \blacktriangleright such an X is absolutely not unique (all rearrangements have the same law)
 - initiates research on rearrangement-invariant maps
 - ▶ one could hope for a more intrinsic definition.
- Subdifferential theory Define appropriately the sub/superdifferential.
 - ► several definitions in use: with velocities ([AGS05]) or with elements of L²_µ(ℝ^d, ℝ^d) in a strict ([GT19]) or large way ([JMQ20])
 - under active contruction.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0●00	000000	0000000

- Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.
 - very powerful results (see [PW18])
 - \blacktriangleright such an X is absolutely not unique (all rearrangements have the same law)
 - initiates research on rearrangement-invariant maps
 - ▶ one could hope for a more intrinsic definition.
- Subdifferential theory Define appropriately the sub/superdifferential.
 - ▶ several definitions in use: with velocities ([AGS05]) or with elements of $L^2_{\mu}(\mathbb{R}^d, \mathbb{R}^d)$ in a strict ([GT19]) or large way ([JMQ20])
 - under active contruction.
- Test function theory Understand how to choose and use test functions.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	○●○○	000000	0000000

- Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.
 - very powerful results (see [PW18])
 - \blacktriangleright such an X is absolutely not unique (all rearrangements have the same law)
 - initiates research on rearrangement-invariant maps
 - ▶ one could hope for a more intrinsic definition.
- Subdifferential theory Define appropriately the sub/superdifferential.
 - ► several definitions in use: with velocities ([AGS05]) or with elements of L²_µ(ℝ^d, ℝ^d) in a strict ([GT19]) or large way ([JMQ20])
 - under active contruction.
- Test function theory Understand how to choose and use test functions.
 - ▶ elements in this direction in [JMQ22], assuming differentiability

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	○●○○	000000	0000000

- Lions theory For each $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, there exists $X \in L^2([0,1]^d, \mathbb{R}^d)$ such that $\mu = X \# \mathcal{L}$.
 - very powerful results (see [PW18])
 - \blacktriangleright such an X is absolutely not unique (all rearrangements have the same law)
 - initiates research on rearrangement-invariant maps
 - ▶ one could hope for a more intrinsic definition.
- Subdifferential theory Define appropriately the sub/superdifferential.
 - ▶ several definitions in use: with velocities ([AGS05]) or with elements of $L^2_{\mu}(\mathbb{R}^d, \mathbb{R}^d)$ in a strict ([GT19]) or large way ([JMQ20])
 - under active contruction.
- Test function theory Understand how to choose and use test functions.
 - ▶ elements in this direction in [JMQ22], assuming differentiability
 - ▶ setting of this presentation, in the line of [JJZ] and [Jer22].

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	○○●○	000000	0000000

Let
$$\varphi \in \mathcal{C}^1(\mathbb{R}^d, \mathbb{R})$$
. Then $\forall b \in T\mathbb{R}^d$, $\langle \nabla \varphi(x), b \rangle = \lim_{t \searrow 0} \frac{\varphi(x+tb) - \varphi(x)}{t}$.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	00●0	000000	0000000

Let
$$\varphi \in \mathcal{C}^1(\mathbb{R}^d, \mathbb{R})$$
. Then $\forall b \in T\mathbb{R}^d$, $\langle \nabla \varphi(x), b \rangle = \lim_{t \searrow 0} \frac{\varphi(x+tb) - \varphi(x)}{t}$.

Let $\varphi : \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ be locally Lipschitz and semiconcave/semiconvex. Its differential is $D_\mu \varphi : T_\mu \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}, \qquad D_\mu \varphi(\xi) \coloneqq \lim_{t \searrow 0} \frac{\varphi\left(\exp_\mu(t \cdot \xi)\right) - \varphi(\mu)}{t}.$

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	○○●○	000000	0000000

Let
$$\varphi \in \mathcal{C}^1(\mathbb{R}^d, \mathbb{R})$$
. Then $\forall b \in T\mathbb{R}^d$, $\langle \nabla \varphi(x), b \rangle = \lim_{t \searrow 0} \frac{\varphi(x+tb) - \varphi(x)}{t}$.

Let $\varphi : \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ be locally Lipschitz and semiconcave/semiconvex. Its differential is $D_\mu \varphi : T_\mu \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}, \qquad D_\mu \varphi(\xi) \coloneqq \lim_{t \searrow 0} \frac{\varphi\left(\exp_\mu(t \cdot \xi)\right) - \varphi(\mu)}{t}.$

 $D_{\mu}\varphi$ is Lipschitz for W_{μ} and positively homogeneous. Let

$$\mathbb{T} \coloneqq \bigcup_{\mu \in \mathscr{P}_2(\mathbb{R}^d)} \{\mu\} \times \{W_\mu - \text{Lipschitz and positively homogeneous maps}\},\$$

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	○○●○	000000	0000000

Let
$$\varphi \in \mathcal{C}^1(\mathbb{R}^d, \mathbb{R})$$
. Then $\forall b \in T\mathbb{R}^d$, $\langle \nabla \varphi(x), b \rangle = \lim_{t \searrow 0} \frac{\varphi(x+tb) - \varphi(x)}{t}$.

Let $\varphi : \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ be locally Lipschitz and semiconcave/semiconvex. Its differential is $D_\mu \varphi : T_\mu \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}, \qquad D_\mu \varphi(\xi) \coloneqq \lim_{t \searrow 0} \frac{\varphi\left(\exp_\mu(t \cdot \xi)\right) - \varphi(\mu)}{t}.$

 $D_\mu arphi$ is Lipschitz for W_μ and positively homogeneous. Let

$$\begin{split} \mathbb{T} &\coloneqq \bigcup_{\mu \in \mathscr{P}_2(\mathbb{R}^d)} \{\mu\} \times \{W_\mu - \text{Lipschitz and positively homogeneous maps}\}, \\ H &: \mathbb{T} \mapsto \mathbb{R}, \qquad H(\mu, p) \coloneqq \sup_{u \in U} -p\left(\pi^\mu \circ f(\cdot, \mu, u) \# \mu\right) \qquad \text{v.s.} \quad \sup_{u \in U} - \langle p, f(x, u) \rangle \end{split}$$

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	○○○●	000000	0000000

The choice of test functions

Define $\mathcal{T}_{\pm} := \{(t,\mu) \mapsto \psi(t) \pm \varphi(\mu) \mid \psi \in \mathcal{C}^1([0,T],\mathbb{R}), \varphi \text{ locally Lip and semiconcave}\}.$

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	000●	000000	0000000

The choice of test functions

Define $\mathcal{T}_{\pm} := \{(t,\mu) \mapsto \psi(t) \pm \varphi(\mu) \mid \psi \in \mathcal{C}^1([0,T],\mathbb{R}), \varphi \text{ locally Lip and semiconcave}\}.$

A map $v : [0,T] \times \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ is a sub/supersolution of (HJ) if $\pm v$ is u.s.c, and for all $\varphi \in \mathcal{T}_{\pm}$ such that $\pm (v - \varphi)$ is maximized at $(t, \mu) \in [0, T[\times \mathscr{P}_2(\mathbb{R}^d),$

 $\pm \left(-\partial_t \varphi(t,\mu) + H\left(\mu, D_\mu \varphi(t,\mu)\right)\right) \leqslant 0.$

A map $v: [0,T] \times \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ is a solution if it is a subsolution, a supersolution, and if $v(T,x) = \mathcal{J}(x)$.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	000●	000000	0000000

The choice of test functions

Define $\mathcal{T}_{\pm} := \{(t,\mu) \mapsto \psi(t) \pm \varphi(\mu) \mid \psi \in \mathcal{C}^1([0,T],\mathbb{R}), \varphi \text{ locally Lip and semiconcave}\}.$

A map $v : [0,T] \times \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ is a sub/supersolution of (HJ) if $\pm v$ is u.s.c, and for all $\varphi \in \mathcal{T}_{\pm}$ such that $\pm (v - \varphi)$ is maximized at $(t, \mu) \in [0, T[\times \mathscr{P}_2(\mathbb{R}^d),$

 $\pm \left(-\partial_t \varphi(t,\mu) + H\left(\mu, D_\mu \varphi(t,\mu)\right) \right) \leqslant 0.$

A map $v: [0,T] \times \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ is a solution if it is a subsolution, a supersolution, and if $v(T,x) = \mathcal{J}(x)$.

▷ Issue 1 solved! <</p>

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	●00000	0000000

Table of Contents

A general introduction to control problems

Elements of Wasserstein spaces and the associated difficulties

Viscosity in the space of measures

A chirurgical intervention in variable doubling for the comparison principle

Results and perspectives

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	0●0000	0000000

Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with $w(T, \cdot) \ge v(T, \cdot)$. Aim: $w \ge v$.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	○●○○○○	0000000

Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with $w(T, \cdot) \ge v(T, \cdot)$. Aim: $w \ge v$.

1. Assume the opposite and make one of v, w "strict".

Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with $w(T, \cdot) \ge v(T, \cdot)$. Aim: $w \ge v$.

- 1. Assume the opposite and make one of v, w "strict".
- 2. Introduce a variable doubling function $\Phi(z_v, z_w) := w(z_w) v(z_v) + \frac{d^2(z_v, z_w)}{\varepsilon}$.

Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with $w(T, \cdot) \ge v(T, \cdot)$. Aim: $w \ge v$. 1. Assume the opposite and make one of v, w "strict".

- 2. Introduce a variable doubling function $\Phi(z_v, z_w) \coloneqq w(z_w) v(z_v) + \frac{d^2(z_v, z_w)}{\varepsilon}$.
- 3. Consider the minimum (z_v^*, z_w^*) of Φ . At this point,

$$w(\cdot) - \left[v(z_v^*) - \frac{d^2(z_v^*, \cdot)}{\varepsilon}\right] \text{ minimized}, \qquad v(\cdot) - \left[w(z_w^*) + \frac{d^2(\cdot, z_w^*)}{\varepsilon}\right] \text{ maximized}.$$

Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with $w(T, \cdot) \ge v(T, \cdot)$. Aim: $w \ge v$. 1. Assume the opposite and make one of v, w "strict".

- 2. Introduce a variable doubling function $\Phi(z_v, z_w) := w(z_w) v(z_v) + \frac{d^2(z_v, z_w)}{\varepsilon}$.
- 3. Consider the minimum (z_v^*, z_w^*) of Φ . At this point,

$$w(\boldsymbol{\cdot}) - \left[v(z_v^*) - \frac{d^2(z_v^*,\boldsymbol{\cdot})}{\varepsilon}\right] \text{ minimized}, \qquad v(\boldsymbol{\cdot}) - \left[w(z_w^*) + \frac{d^2(\boldsymbol{\cdot},z_w^*)}{\varepsilon}\right] \text{ maximized}.$$

4. Since the terms in brackets are test functions, apply the definition of viscosity solution to obtain a contradiction for ε small enough.

Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with $w(T, \cdot) \ge v(T, \cdot)$. Aim: $w \ge v$. 1. Assume the opposite and make one of v, w "strict".

- 2. Introduce a variable doubling function $\Phi(z_v, z_w) := w(z_w) v(z_v) + \frac{d^2(z_v, z_w)}{\varepsilon}$.
- 3. Consider the minimum (z_v^*, z_w^*) of Φ . At this point,

$$w(\boldsymbol{\cdot}) - \left[v(z_v^*) - \frac{d^2(z_v^*,\boldsymbol{\cdot})}{\varepsilon}\right] \text{ minimized}, \qquad v(\boldsymbol{\cdot}) - \left[w(z_w^*) + \frac{d^2(\boldsymbol{\cdot}, z_w^*)}{\varepsilon}\right] \text{ maximized}.$$

4. Since the terms in brackets are test functions, apply the definition of viscosity solution to obtain a contradiction for ε small enough.

Step 3. implies to minimize a l.s.c function, but no local compactness.

Let (X, d) be a complete metric space.

Gauge-type functions Any lower semicontinuous $\rho : X \times X \mapsto [0, \infty]$ satisfying $\rho(x, x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x, y) \leq \eta$ implies $d(x, y) \leq \varepsilon$.

Let (X, d) be a complete metric space.

Gauge-type functions Any lower semicontinuous $\rho : X \times X \mapsto [0, \infty]$ satisfying $\rho(x, x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x, y) \leq \eta$ implies $d(x, y) \leq \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leq \inf_X f + \varepsilon$.

Let (X, d) be a complete metric space.

Gauge-type functions Any lower semicontinuous $\rho : X \times X \mapsto [0, \infty]$ satisfying $\rho(x, x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x, y) \leq \eta$ implies $d(x, y) \leq \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leq \inf_X f + \varepsilon$. Then there exist $y \in X$ and a sequence $(x_i)_{i=0}^{\infty} \subset X$ such that

$$\rho(x_0, y) \leqslant \varepsilon / \delta_0 \quad \text{and} \quad \rho(x_i, y) \leqslant \varepsilon / (2^i \delta_0) \tag{1a}$$

(1b) (1c)

Let (X, d) be a complete metric space.

Gauge-type functions Any lower semicontinuous $\rho : X \times X \mapsto [0, \infty]$ satisfying $\rho(x, x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x, y) \leq \eta$ implies $d(x, y) \leq \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leq \inf_X f + \varepsilon$. Then there exist $y \in X$ and a sequence $(x_i)_{i=0}^{\infty} \subset X$ such that

$$\begin{pmatrix} \rho(x_0, y) \leqslant \varepsilon / \delta_0 & \text{and} & \rho(x_i, y) \leqslant \varepsilon / (2^i \delta_0) \\ f(y) + \sum_{i=0}^{\infty} \delta_i \rho(y, x_i) \leqslant f(x_0) \\ \end{cases}$$
(1a) (1b)

(1c)

Let (X, d) be a complete metric space.

Gauge-type functions Any lower semicontinuous $\rho : X \times X \mapsto [0, \infty]$ satisfying $\rho(x, x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x, y) \leq \eta$ implies $d(x, y) \leq \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leq \inf_X f + \varepsilon$. Then there exist $y \in X$ and a sequence $(x_i)_{i=0}^{\infty} \subset X$ such that

$$\begin{cases} \rho(x_0, y) \leqslant \varepsilon/\delta_0 \quad \text{and} \quad \rho(x_i, y) \leqslant \varepsilon/(2^i\delta_0) \\ f(y) + \sum_{i=0}^{\infty} \delta_i \rho(y, x_i) \leqslant f(x_0) \\ f(x) + \sum_{i=0}^{\infty} \delta_i \rho(x, x_i) > f(y) + \sum_{i=0}^{\infty} \delta_i \rho(y, x_i) \quad \forall x \in X \setminus \{y\}. \end{cases}$$
(1c)

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000●00	0000000

Illustration of Borwein-Preiss

Figure: Iterative construction with $f(x) = (1 + |x|)^{-1}$, $\delta_i = 0.01/(1 + i)^2$, $\rho(x, y) = |x - y|^2$.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000●00	0000000

Illustration of Borwein-Preiss

Figure: Iterative construction with $f(x) = (1 + |x|)^{-1}$, $\delta_i = 0.01/(1 + i)^2$, $\rho(x, y) = |x - y|^2$.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000●00	0000000

Illustration of Borwein-Preiss

Figure: Iterative construction with $f(x) = (1 + |x|)^{-1}$, $\delta_i = 0.01/(1 + i)^2$, $\rho(x, y) = |x - y|^2$.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	0000●0	0000000

Borwein-Preiss: $\forall \delta > 0$, existence of minimum of a *perturbed* function $\Phi(\cdot, \cdot) + \alpha_{\delta}(\cdot, \cdot)$.

Borwein-Preiss: $\forall \delta > 0$, existence of minimum of a *perturbed* function $\Phi(\cdot, \cdot) + \alpha_{\delta}(\cdot, \cdot)$.

• For each $\delta > 0$, obtain a minimum point $(z_{v,\delta}^*, z_{w,\delta}^*)$ of $\Phi(\cdot, \cdot) + \alpha_{\delta}(\cdot, \cdot)$.

$$w(\boldsymbol{\cdot}) - \left[v(z_{v,\delta}^*) - \frac{d^2(z_{v,\delta}^*,\boldsymbol{\cdot})}{\varepsilon} - \alpha_{\delta}(z_{v,\delta}^*,\boldsymbol{\cdot})\right] \text{ minimized.}$$

Borwein-Preiss: $\forall \delta > 0$, existence of minimum of a *perturbed* function $\Phi(\cdot, \cdot) + \alpha_{\delta}(\cdot, \cdot)$.

• For each $\delta > 0$, obtain a minimum point $(z_{v,\delta}^*, z_{w,\delta}^*)$ of $\Phi(\cdot, \cdot) + \alpha_{\delta}(\cdot, \cdot)$.

$$w(\boldsymbol{\cdot}) - \left[v(z_{v,\delta}^*) - \frac{d^2(z_{v,\delta}^*,\boldsymbol{\cdot})}{\varepsilon} - \alpha_{\delta}(z_{v,\delta}^*,\boldsymbol{\cdot})\right] \text{ minimized.}$$

• Key idea: build the space of test functions such that the term in bracket is in \mathcal{T}_{-} .

Borwein-Preiss: $\forall \delta > 0$, existence of minimum of a *perturbed* function $\Phi(\cdot, \cdot) + \alpha_{\delta}(\cdot, \cdot)$.

• For each $\delta > 0$, obtain a minimum point $(z_{v,\delta}^*, z_{w,\delta}^*)$ of $\Phi(\cdot, \cdot) + \alpha_{\delta}(\cdot, \cdot)$.

$$w(\boldsymbol{\cdot}) - \left[v(z_{v,\delta}^*) - \frac{d^2(z_{v,\delta}^*,\boldsymbol{\cdot})}{\varepsilon} - \alpha_{\delta}(z_{v,\delta}^*,\boldsymbol{\cdot})\right] \text{ minimized.}$$

• Key idea: build the space of test functions such that the term in bracket is in \mathcal{T}_{-} .

$$\mathcal{T}_{\underline{+}} \coloneqq \left\{ \mathcal{C}^1([0,T],\mathbb{R}) \underline{+} \sum_{i \geqslant 0} \delta_i d^2_{\mathcal{W}}(\cdot,\sigma_i) \ \Big| \ \delta_i \geqslant 0, \ \sum_{i \geqslant 0} \delta_i < \infty, \ \operatorname{diam}\left(\{\sigma_i\}\right) < \infty. \right\}$$

Borwein-Preiss: $\forall \delta > 0$, existence of minimum of a *perturbed* function $\Phi(\cdot, \cdot) + \alpha_{\delta}(\cdot, \cdot)$.

• For each $\delta > 0$, obtain a minimum point $(z_{v,\delta}^*, z_{w,\delta}^*)$ of $\Phi(\cdot, \cdot) + \alpha_{\delta}(\cdot, \cdot)$.

$$w(\boldsymbol{\cdot}) - \left[v(z_{v,\delta}^*) - \frac{d^2(z_{v,\delta}^*,\boldsymbol{\cdot})}{\varepsilon} - \alpha_{\delta}(z_{v,\delta}^*,\boldsymbol{\cdot})\right] \text{ minimized.}$$

• Key idea: build the space of test functions such that the term in bracket is in \mathcal{T}_{-} .

$$\mathcal{T}_{\pm} \coloneqq \left\{ \mathcal{C}^1([0,T],\mathbb{R}) \pm \sum_{i \geqslant 0} \delta_i d_{\mathcal{W}}^2(\cdot,\sigma_i) \ \Big| \ \delta_i \geqslant 0, \ \sum_{i \geqslant 0} \delta_i < \infty, \ \operatorname{diam}\left(\{\sigma_i\}\right) < \infty. \right\}$$

• Apply the definition of viscosity, some estimate machinery to get rid of the perturbation.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	00000●	0000000
Context of the idea				

• Long history of Ekeland principles in viscosity (Crandall & Lions [CL85] for nonemptiness of subdifferential)

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	00000●	0000000
Context of the idea				

- Long history of Ekeland principles in viscosity (Crandall & Lions [CL85] for nonemptiness of subdifferential)
- Jimenez, Maringonda and Quincampoix [MQ18, JMQ20] use the original Ekeland principle.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	00000●	0000000
Context of the idea				

- Long history of Ekeland principles in viscosity (Crandall & Lions [CL85] for nonemptiness of subdifferential)
- Jimenez, Maringonda and Quincampoix [MQ18, JMQ20] use the original Ekeland principle.
 - Smooth perturbations are not allowed

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	00000●	0000000
Contaxt of the idea				

- Long history of Ekeland principles in viscosity (Crandall & Lions [CL85] for nonemptiness of subdifferential)
- Jimenez, Maringonda and Quincampoix [MQ18, JMQ20] use the original Ekeland principle.
 - Smooth perturbations are not allowed
 - ▶ Finite sequences are allowed (lightens the presentation)

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	00000●	000000
Contaxt of the idea				

- Long history of Ekeland principles in viscosity (Crandall & Lions [CL85] for nonemptiness of subdifferential)
- Jimenez, Maringonda and Quincampoix [MQ18, JMQ20] use the original Ekeland principle.
 - Smooth perturbations are not allowed
 - ▶ Finite sequences are allowed (lightens the presentation)
 - \blacktriangleright To account for the perturbation, introduction of $\delta-{\rm viscosity}:$

 $\pm \left(-\partial_t \varphi + H\left(\mu, D_\mu \varphi\right) - \delta C \right) \leqslant 0 \qquad \forall \varphi \text{ s.t. } \pm \left(v - \varphi \right) \text{ reaches a } \delta - \max,$

where C > 0 is a constant related to the speed of the propagation of information.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	00000●	000000
Contaxt of the idea				

- Long history of Ekeland principles in viscosity (Crandall & Lions [CL85] for nonemptiness of subdifferential)
- Jimenez, Maringonda and Quincampoix [MQ18, JMQ20] use the original Ekeland principle.
 - Smooth perturbations are not allowed
 - ▶ Finite sequences are allowed (lightens the presentation)
 - \blacktriangleright To account for the perturbation, introduction of $\delta-{\rm viscosity}:$

 $\pm \left(-\partial_t \varphi + H\left(\mu, D_\mu \varphi\right) - \delta C \right) \leqslant 0 \qquad \forall \varphi \text{ s.t. } \pm \left(v - \varphi \right) \text{ reaches a } \delta - \max,$

where C > 0 is a constant related to the speed of the propagation of information.

• The "swallowing trick" is a simple idea, but requires a large enough test function set.

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000000	●000000

Table of Contents

A general introduction to control problems

Elements of Wasserstein spaces and the associated difficulties

Viscosity in the space of measures

A chirurgical intervention in variable doubling for the **comparison** principle

Results and perspectives

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000000	0●00000

Theorem – Comparison principle ([JPZ23]) Assume $f : \mathbb{R}^d \times \mathscr{P}_2(\mathbb{R}^d) \times U \mapsto T\mathbb{R}^d$ is Lip. and bounded. Let v, w be Lipschitz and bounded sub/supersolutions of (HJ). Then $\inf_{(t,\mu)\in[0,T]\times\mathscr{P}_2(\mathbb{R}^d)} [w(t,\mu) - v(t,\mu)] \ge \inf_{\mu\in\mathscr{P}_2(\mathbb{R}^d)} [w(T,\mu) - v(T,\mu)].$

What is done

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000000	0●00000

What is done

Theorem – Comparison principle ([JPZ23]) Assume $f : \mathbb{R}^d \times \mathscr{P}_2(\mathbb{R}^d) \times U \mapsto T\mathbb{R}^d$ is Lip. and bounded. Let v, w be Lipschitz and bounded sub/supersolutions of (HJ). Then

$$\inf_{(t,\mu)\in[0,T]\times\mathscr{P}_2(\mathbb{R}^d)} \left[w(t,\mu) - v(t,\mu) \right] \geqslant \inf_{\mu\in\mathscr{P}_2(\mathbb{R}^d)} \left[w(T,\mu) - v(T,\mu) \right].$$

Theorem Assume $\mathcal{J} : \mathscr{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ and f are Lip. and bounded. The value function V is the unique Lipschitz and bounded viscosity solution of (HJ).

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000000	00●0000

Perspectives on this topic

Improving the results:

• weakening the regularity?

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000000	00●0000
Perspectives on this	s topic			

Improving the results:

- weakening the regularity?
- another argument by weakening the topology on measures (ongoing work of Othmane)

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000000	00●0000
Perspectives on this	s topic			

Improving the results:

- weakening the regularity?
- another argument by weakening the topology on measures (ongoing work of Othmane)
- elements of comparison with the semidifferential notions (some results)

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000000	00●0000
Perspectives on this	s topic			

Improving the results:

- weakening the regularity?
- another argument by weakening the topology on measures (ongoing work of Othmane)
- elements of comparison with the semidifferential notions (some results)

Ideas for the future:

• generalization to other spaces than \mathbb{R}^d

Control problems	Wasserstein	Viscosity	Comparison	Results
	000000	0000	000000	00●0000
- ·				

Perspectives on this topic

Improving the results:

- weakening the regularity?
- another argument by weakening the topology on measures (ongoing work of Othmane)
- elements of comparison with the semidifferential notions (some results)

Ideas for the future:

- generalization to other spaces than \mathbb{R}^d
- using Measure Differential Equations ([Pic19, CCDMP21])

Control problems	Wasserstein 000000	Viscosity 0000	Comparison 000000	Results

Thank you!

- [AGS05] Luigi Ambrosio, Nicola Gigli, and Guiseppe Savaré.
 Gradient Flows.
 Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel, 2005.
- [BP87] J. M. Borwein and D. Preiss.

A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions.

Transactions of the American Mathematical Society, 303(2):517–527, 1987.

[CCDMP21] Fabio Camilli, Giulia Cavagnari, Raul De Maio, and Benedetto Piccoli. Superposition principle and schemes for Measure Differential Equations. *Kinetic & Related Models*, 14(1):89, 2021.

Control problems	Wasserstein 000000	Viscosity 0000	Comparison 000000	Results 0000000
[CL85]	Michael G Crandall and Pierre	-Louis Lions.		
	Hamilton-Jacobi equations in i	nfinite dimensions I. U	Iniqueness of viscosity soluti	ions.
	Journal of Functional Analysis	, 62(3):379–396, July	1985.	
[GT19]	Wilfrid Gangbo and Adrian Tu	dorascu.		
	On differentiability in the Was equations.	serstein space and well	l-posedness for Hamilton–Ja	icobi
	Journal de Mathématiques Pu	res et Appliquées, 125	:119–174, May 2019.	
[Jer22]	Othmane Jerhaoui.			
	Viscosity Theory of First Orde	r Hamilton Jacobi Equ	iations in Some Metric Spac	ces.
	PhD thesis, Institut Polytechn	ique de Paris, Paris, 20)22.	

[JJZ] Frédéric Jean, Othmane Jerhaoui, and Hasnaa Zidani.

Deterministic optimal control on Riemannian manifolds under probability knowledge of the initial condition.

page 30.

[JMQ20] Chloé Jimenez, Antonio Marigonda, and Marc Quincampoix.
 Optimal control of multiagent systems in the Wasserstein space.
 Calculus of Variations and Partial Differential Equations, 59, March 2020.

[JMQ22] Chloé Jimenez, Antonio Marigonda, and Marc Quincampoix. Dynamical systems and Hamilton-Jacobi-Bellman equations on the Wasserstein space and their L2 representations. 2022.

[JPZ23] Othmane Jerhaoui, Averil Prost, and Hasnaa Zidani.

Viscosity solutions of centralized control problems in measure spaces, 2023.

0000	000000	0000	000000	0000000
[MQ18]	Antonio Marigonda and Marc Qu	uincampoix.		
	Mayer control problem with prob	pabilistic uncertainty	on initial positions.	
	Journal of Differential Equations	5, 264(5):3212–3252	, March 2018.	
[Pic19]	Benedetto Piccoli.			
	Measure Differential Equations.			
	Archive for Rational Mechanics a	and Analysis, 233(3)):1289–1317, September 2019.	
[PW18]	Huyên Pham and Xiaoli Wei.			
	Bellman equation and viscosity s	olutions for mean-fi	eld stochastic control problem	
	ESAIM: Control, Optimisation a	nd Calculus of Varia	ations, 24(1):437–461, January	2018.