

Using Optimal Transport to define viscosity solutions of control problems

Othmane Jerhaoui, Averil Prost & Hasnaa Zidani

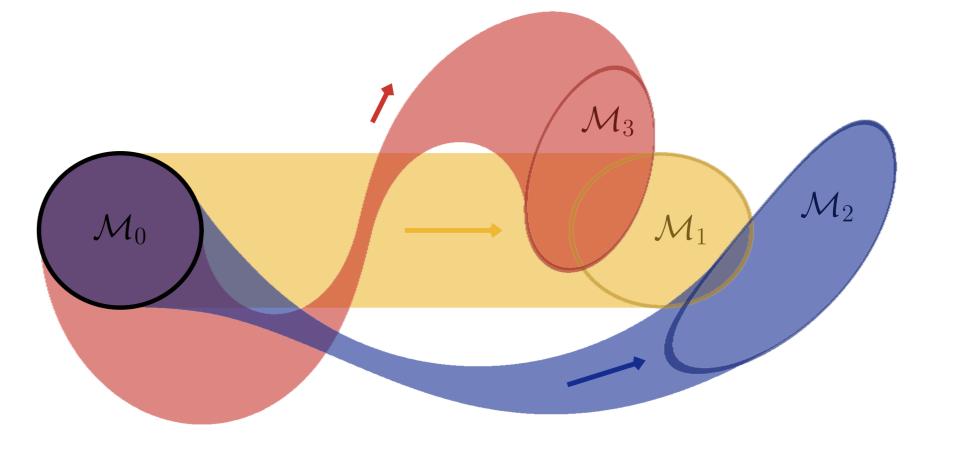
LMI - INSA Rouen Normandie averil.prost@insa-rouen.fr

Motivation – Control problems on measures

We settle ourselves in the space of probability measures $\mathcal{P}_2(\mathbb{R}^d)$, endowed with the Monge-Kantorovitch distance $d_{\mathcal{W}}$ with p = 2. In $\mathcal{P}_2(\mathbb{R}^d)$, absolutely continuous curves are characterized as the solutions of the continuity equation [AGS05]. We consider time-dependent measurable controls $u(\cdot)$ valued in a compact $U \subset \mathbb{R}^{\kappa}$. Finding the trajectory minimizing some cost \mathfrak{J} leads to study

 $V(t,\nu) \coloneqq \inf \left\{ \Im \left(\mu_T^{t,\nu,u} \right) \mid (\mu_s^{t,\nu,u})_{s \in [t,T]} \text{ is a solution of (CE) with } \mu_t = \nu \text{ and control } u(\cdot) \right\}.$ (1)

Such models find burgeoning applications in physics, biology, image processing or crowd simulation.



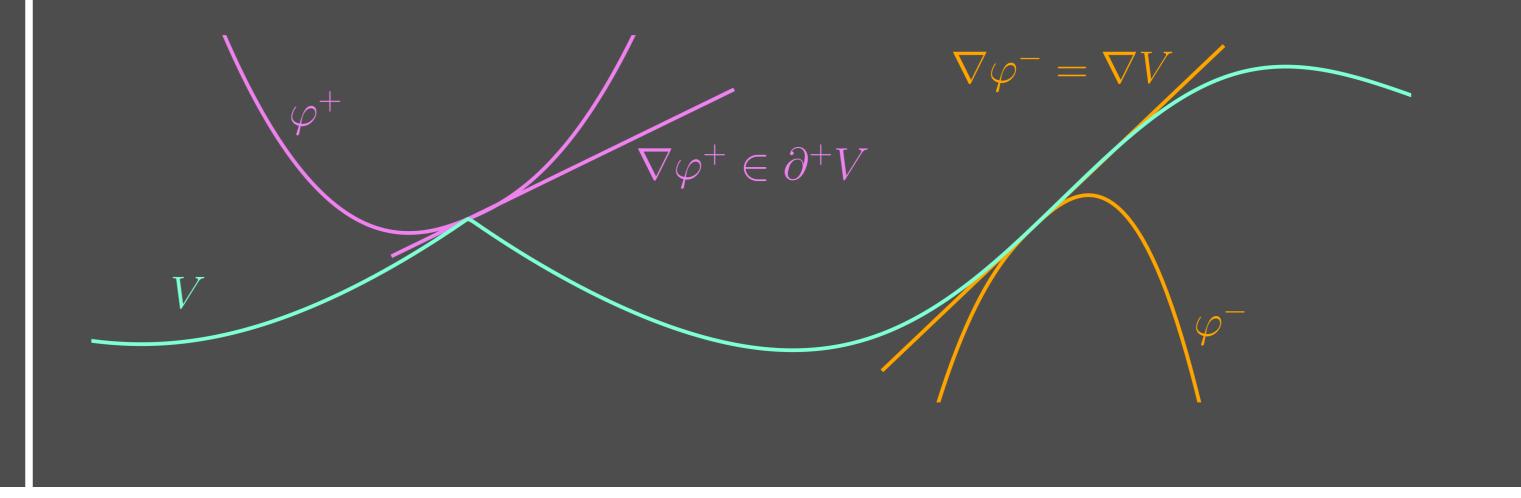
CHARACTERISTICS IN WASSERSTEIN

The controlled continuity equation (CE) is defined in distribution sense, and well-posed for our Lip. and bounded $f : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times U \mapsto T\mathbb{R}^d$.

> $\partial_s \mu_s + \operatorname{div} \left(f(\cdot, \mu_s, u(s)) \mu_s \right) = 0$ (CE)

In Euclidian spaces, differential equations arising in control problems are understood using either test functions or semidifferentials.

VISCOSITY FOR CONTROL PROBLEMS



Differential tools – Derivation along the geodesics

In the Euclidian space, one follows a geodesic by moving along a given vector. An analogy stands over measures, provided one accepts that tangent directions at μ will be represented as a special subset $\mathcal{P}(T\mathbb{R}^d)_{\mu,o}$ of the probabilities over the underlying tangent space, in bijection with the optimal transport plans. The completion of such a set gives a *tangent cone* (see Def 1). The exponential map $t \mapsto \exp_{\mu}(t \cdot \xi) \coloneqq (\pi_x + t\pi_v) \# \xi$ then replaces linear displacements in directional derivatives (see Def 2). Instead of a gradient, it is the map $\xi \mapsto D_{\mu}g(\mu)(\xi)$ of directional derivatives that will be used to define the Hamiltonian. Any locally Lipschitz and DC (difference of semiconvex) function admits such a differential, and fortunately, the squared Wasserstein distance happens to be so!

 $d^2_{\mathcal{W}}(\cdot,
u)$

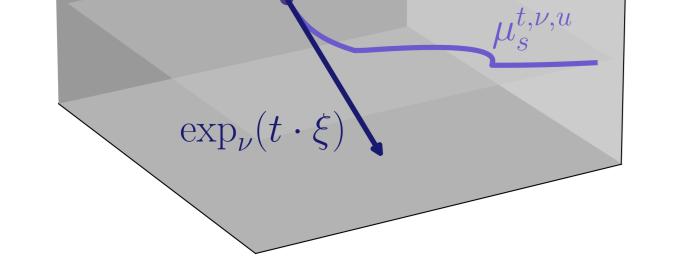
L OL

$$\begin{array}{c|c} \text{Def } 1 - \text{TANGENT CONE [GIG08]} & \text{Def } 2 - \text{DERIVATIVE ALONG GEODESICS} \\ \text{Denote } \mathcal{P}_{2}(TE)_{\mu} \ni \xi \sim_{\mu} \overline{\xi} \text{ if } W_{\mu}(\xi, \overline{\xi}) = 0, \text{ with} \\ W_{\mu}(\xi, \overline{\xi}) \coloneqq \overline{\lim_{l \searrow 0}} \frac{d_{W}(\exp_{\mu}(l \cdot \xi), \exp_{\mu}(l \cdot \overline{\xi}))}{l} \\ \text{The tangent cone to } \mathcal{P}_{2}(\mathbb{R}^{d}) \text{ at } \mu \text{ is defined as} \\ T_{\mu}\mathcal{P}_{2}(E) \coloneqq \overline{\mathcal{P}_{2}(TE)_{\mu,o}/\sim_{\mu}}^{W_{\mu}}. \end{array} \\ \text{If } g \text{ is Lipschitz and DC, the limit exists, and} \\ \mathcal{D}_{\mu}g(\mu) (\xi) \coloneqq \lim_{l \Rightarrow 0} \frac{g(\exp_{\mu}(l \cdot \xi)) - g(\mu)}{l} \\ \text{homogeneous function over } (T_{\mu}\mathcal{P}_{2}(E), W_{\mu}). \end{array} \\ \text{The tangent cone to } \mathcal{P}_{2}(\mathbb{R}^{d}) \text{ at } \mu \text{ is defined as} \\ T_{\mu}\mathcal{P}_{2}(E) \coloneqq \overline{\mathcal{P}_{2}(TE)_{\mu,o}/\sim_{\mu}}^{W_{\mu}}. \end{array} \\ \text{If } g \text{ is Lipschitz and DC, the limit exists, and} \\ \mathcal{D}_{\mu}g(\mu) \text{ extends to a Lipschitz and positively} \\ \text{homogeneous function over } (T_{\mu}\mathcal{P}_{2}(E), W_{\mu}). \end{array} \\ \text{T is used as a metric analogue of the dual space.} \end{array}$$

By construction, the differential $D_{\mu}\varphi(t,\mu)$ exists and belongs to \mathcal{C}_{μ} for all $\varphi \in \mathfrak{T}_{\pm}$ (see Def 3). We consider the equation

 $-\partial_t V(t,\mu) + H(\mu, D_\mu V(t,\mu)) = 0, \qquad V(T,\mu) = \mathfrak{J}(\mu).$ (HJ)

Def 4 A function $u : [0, T] \times \mathcal{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ is a sub/supersolution of (HJ) if it is usc/lsc, and if for any test function $\varphi \in \mathfrak{T}_{\pm}$ such that $u - \varphi$ attains a max/minimum in $(t, \mu) \in [0, T[\times \mathcal{P}_2(\mathbb{R}^d), \text{ there holds } \pm [-\partial_t \varphi(t, \mu) + H(\mu, D_\mu \varphi(t, \mu))] \leq 0$. It is a solution of (HJ) if it is both a sub and supersolution, and satisfies the terminal condition.



Def 4 allows for a weak comparison principle, relying on arguments inspired from the semidifferential notion of [JMQ22].

THEOREM – COMPARISON PRINCIPLE Assume f is Lipschitz and bounded, and let v, w be Lipschitz and bounded sub/supersolution of (HJ). Then $\sup_{(t,\mu)\in[0,T]\times\mathcal{P}_2(\mathbb{R}^d)}(v(t,\mu)-w(t,\mu)) \leq \sup_{(t,\mu)\in\{T\}\times\mathcal{P}_2(\mathbb{R}^d)}(v(t,\mu)-w(t,\mu)).$

\overline{S} OLUTION OF (HJ) - [JPZ23]

Assume that the dynamic f and the terminal cost \mathfrak{J} are Lipschitz-continuous and bounded, and that the function set $\{f(\cdot, \mu, u) \mid u \in U\} \subset \mathcal{C}(\mathbb{R}^d, T\mathbb{R}^d)$ is convex for all $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. Then the value function V, defined in (1), is the unique Lipschitz and bounded solution of (HJ) in the sense of Def 4.

[AGS05] Luigi Ambrosio, Nicola Gigli, and Guiseppe Savaré. Gradient Flows. Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel, 2005.

[Gig08] Nicola Gigli. On the Geometry of the Space of Probability Measures Endowed with the Quadratic Optimal Transport Distance. PhD thesis, Scuola Normale Superiore di Pisa, Pisa, 2008. [JMQ22] Chloé Jimenez, Antonio Marigonda, and Marc Quincampoix. Dynamical systems and Hamilton-Jacobi-Bellman equations on the Wasserstein space and their L2 representations. 2022. [JPZ23] Othmane Jerhaoui, Averil Prost, and Hasnaa Zidani. Viscosity solutions of centralized control problems in measure spaces, 2023.

FoCM 2023, 9th Conference on Foundations of Computational Mathematics, 12-21 June 2023, Paris, France.